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Abstract

Motivation: The solvent accessible surface is an essential structural property measure related to the protein struc-
ture and protein function. Relative solvent accessible area (RSA) is a standard measure to describe the degree of resi-
due exposure in the protein surface or inside of protein. However, this computation will fail when the residues infor-
mation is missing.

Results: In this article, we proposed a novel method for estimation RSA using the Ca atom distance matrix with the
deep learning method (EAGERER). The new method, EAGERER, achieves Pearson correlation coefficients of 0.921–
0.928 on two independent test datasets. We empirically demonstrate that EAGERER can yield better Pearson correl-
ation coefficients than existing RSA estimators, such as coordination number, half sphere exposure and SphereCon.
To the best of our knowledge, EAGERER represents the first method to estimate the solvent accessible area using
limited information with a deep learning model. It could be useful to the protein structure and protein function
prediction.

Availabilityand implementation: The method is free available at https://github.com/cliffgao/EAGERER.

Contact: gaojz@nankai.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The location of the residues in the protein is very important to the
protein structure and protein function (Aloy et al., 2001). For ex-
ample, the stability of protein could be influenced by the mutations
of residues in the protein core (Brockwell et al., 2002), and may
cause protein misfolding and aggregation (van der Kamp and
Daggett, 2010; Xu et al., 2011). The protein stability and specificity
of the protein interaction may be influenced by the residues on the
protein surface (Yi et al., 2017).

Solvent accessible area (SA) is an important structure parameter
to measure the exposed or buried status of residues in a protein. For
a given protein 3D structure, the SA was typically computed by roll-
ing a probe sphere over the van der Waals surface of the protein
(Sanner et al., 1996). To get the accessible surface or residues, the
SA of the entire protein was divided by the number of residues. Since
the residue is of different types and different sizes, the relative access-
ible area (RSA) was proposed (Rost and Sander, 1994), which is
defined as the residue SA divided by the maximal SA of this type of
residue. Predicted RSA values have been used as useful features in

many protein function predictions (Gao et al., 2010, 2012, 2016a,b,
2018, 2019, 2020; Zhang et al., 2019; Zheng et al., 2014).

In practice, the structure may not be well resolved. In cases where
the residues have missing coordinates or the structure with low reso-
lution, the computation of the residue accessible surface will fail be-
cause the coordinates of all the heavy atoms must be known a priori
to compute the accessible surface area of a residue. Another limita-
tion of SA is that it cannot be used to describe the completely buried
residues.

To address this issue, several methods have been proposed to es-
timate the solvent surface. For example, the coordination number
(CN) (Simons et al., 1997) was proposed by counting the number of
Ca atoms within a sphere around the Ca atom of the residue. CN is a
useful index to distinguish the completely exposed residue from
buried residue. But it cannot determine the degree of solvent expos-
ure among the piratically exposed residues.

The half sphere exposure (HSE) (Hamelryck, 2005) was pro-
posed by cutting the sphere determining the CN into two half
spheres by a plane orthogonal to the Ca–Cb vector of the residue.
RSA is correlated to CN values corresponding to the upper half-
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sphere. HSE is the CN number in the upper half-sphere. HSE can be
used as an RSA. However, in order to calculate this index, we need
to know both coordinates of Ca-Cb atoms.

Recently, SphereCon (Gress and Kalinina, 2020) was proposed
to estimate the RSA from the structure, or the structural data are
missing. SphereCon can output an estimation of RSA if the coordi-
nates of Ca atoms are available and protein sequence is known; if
the only coordinates of Ca atoms are available; if the only prediction
of a distance matrix or contact matrix is available. The intersections
between the search space and the spheres corresponding to the
neighboring residues were used to calculate SphereCon.

SphereCon contains two parameters, r and a, where r is the
search sphere radius, a is the cosine of the apex angle. That means
SphereCon needs cutoffs to find the optimized parameters. It is a
simple rule to provide a measure using the cutoff. Could we estimate
the residue RSA values using a more complex model? To address
this issue, we proposed a novel method for estimation RSA using the
Ca atom distance matrix with the deep learning method
(EAGERER). The new method was evaluated on different test data-
sets and compared with other RSA estimators. Results reveal that
EAGERER obtains higher Pearson correlation coefficients and lower
mean absolute errors.

2 Materials and methods

2.1 Datasets
The model was trained and tested using datasets from SPIDER2
(Yang et al., 2017). The training dataset of SPIDER2 contains 4590
proteins, whereas the test dataset of SPIDER2 has 1199 proteins.
The sequence identity of the proteins is less than 25% and the reso-
lutions of their X-ray resolutions are better than 2 Å. We further sep-
arated the 4590 proteins in the training dataset, using 80% as the
training dataset and 20% as the validation dataset. Finally, there are
3672 proteins used as training dataset and 918 proteins used as the
validation dataset, and 1199 proteins as the test dataset, (denoted by
TR3672, Val918, TS1199). The validation dataset was used to opti-
mized the parameters.

To further evaluate the performances of our method, we down-
loaded the CASP14 (Critical Assessment of Techniques for Protein
Structure Prediction) at https://www.predictioncenter.org/down
load_area/CASP14/targets/. This dataset contains 34 proteins
(denoted by CASP34). To evaluate the influence of the protein sec-
ondary structure, we got a subset of the SphereCon (Gress and
Kalinina, 2020) training dataset using the first chain of each protein.
These proteins were downloaded from SCOP (Murzin et al., 1995).
We chose the representative structures from the alpha, beta, alpha/
beta, alphaþbeta families. This dataset contains 499 proteins
(denoted by SCOP499). These datasets are available at http://github.
com/cliffgao/EAGERER.

2.2 Features
The input features include both 1D structural features and 2D dis-
tance maps. For the 1D structural features, the residue was encoded
as a 21-dimension vector (20 amino acid types and one for non-
standard amino acids). The 2D distance was calculated by the dis-
tance of the Ca atom coordinates in the protein structures.

2.3 Method
Motivated by the Chen et al. SPORF (Chen et al., 2020), the 2D resi-
due–residue distance map was viewed as an image. Recurrent neural
network (RNN) and convolutional neural network (CNN) were
designed to extract features from 1D features and 2D features. A
self-attentional ultra-deep residual convolutional neural network
was first used to encode the 2D distance map into a vector represen-
tation. And then the vector representation was concatenated with
1D one-hot vector and fed into an RNN module to generate a pro-
tein RSA prediction. The neural network of this method is shown in
Figure 1.

For the residual block, batch normalization was used to regulate
the network. The exponential linear unit (ELU) was used as an

activation layer. There are 30 (10þ 10þ10) residual blocks used in
the model. The self-attention block converts the feature with
L*L*64 into the feature with L*64. The bidirectional long short-
term memory (LSTM) contains 3 layers. For each layer, there are
two independent LSTM. Each LSTM contains 64 one-cell memory
blocks and 128 hidden states for each bidirectional LSTM layer. The
fully connected layer consists of 64 nodes with a bias node with an
ELU activation function. The output layer has 1 output neuron to
output the predicted RSA value for each residue. More details could
be found in Chen et al. (2020).

The current model is different from SPROF (Chen et al., 2020).
The current model integrates the SPORF model into one module for
representing the input protein sequence. The current model used the
mean squared error (MSE) loss to predict the continuous RSA val-
ues, instead of the cross-entropy loss in the SPROF model for dis-
crete states prediction.

The model was implemented using the PyTorch library (https://
github.com/pytorch) and trained with mean squared error loss func-
tion and ADAM algorithm for optimization. We optimized the
parameters on the validation dataset. The learning rate of 0.0005
was used and 50% dropout rate was used in the fully connected
layer. Epoch¼ 50 was used in the final model.

2.4 Measure the performance
The actual SA value was calculated by DSSP software (Kabsch and
Sander, 1983), and then the SA was changed into the RSA by divided
the maximum of the SA of the residue (See supplementary Table S1).
Pearson correlation coefficient (PCC) was used to evaluate the rela-
tionship between the predicted RSA and actual RSA value. Mean ab-
solute value (MAE) between the predicted RSA and actual RSA was
also used to evaluate the performances. We compute the PCC/MAE
for each protein on the dataset and compute the average PCC/MAE.

We notice that the proposed method was designed for structures
with missing atoms, where DSSP software cannot work. DSSP soft-
ware has to compute the SA or RSA of residue with all atom coordi-
nates, while PDB files often contain missing side-chain atoms,
especially for low-resolution experimental structures. Additionally,
the predicted protein structures usually have main-chain or Ca atoms
only, which cannot be processed by DSSP as well.

3 Results

3.1 Results on the training dataset
The results on training, validation and test datasets are shown in
Table 1. The average PCCs between the predicted RSA and actual
RSA were 0.942, 0.927 and 0.921 on the training, validation and
test datasets, respectively. The average MAE values are 0.080, 0.089
and 0.091 on the training, validation and test dataset, respectively. It
offers a similar quality of the model on both the training dataset and
test dataset. It indicates that the model is not overfitting. The pro-
posed method achieved the same performance on the validation

Fig. 1. The neural network layout of the proposed method EAGERER. L is the

length of the protein sequence. Nf is the number of kernels in each convolution

layer; Na is the number of parallel attention layers. FC, fully connect
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dataset and the test dataset. It shows that the proposed method is
robust.

3.2 Comparison with other machine learning methods
To assess the performance of our method, we compared our method
with other machine learning methods, fully connected network
(NN), ridge regression (RR) and random forest (RF). We also tried
to use the support vector machine with a linear kernel or non-linear
kernels to implement the method. However, it took too long to gen-
erate the results. The number of features needs to be fixed to run the
traditional machine learning method. We used both 1D features,
and encoded amino acids in a 21D vector and 2D features, in which
the 2D distances were divided into 32 bins [0, 0.5,1.0, . . .,16]. The
total feature numbers were 53 (21þ 32).

We optimized the parameters on the validation dataset and pre-
dicted with the optimized parameters on the test dataset. The results
(Table 2) show that the performance of the proposed method was
the best in terms of the average PCC and average MAE. The pro-
posed method, EAGERER, achieved an average PCC of 0.921, aver-
age MAE of 0.091. It indicates that the proposed method can learn
more information from the training dataset and achieved better per-
formance than the traditional machine learning method.

3.3 Comparison with other indexes to estimate the RSA
We further compared our method EAGERER with Contact number
(CN), Half Sphere Exposed (HSE) and SphereCon with two different
versions using only Ca atom or Ca atom and amino acids type. The
values of CN and HSE were computed using a cutoff of 13 Å.
SphereCon was run with parameter ‘-bb’, which means SphereCon
used the only Ca atom coordinates to estimate RSA, and with par-
ameter ‘-Ca’, which means SphereCon used the Ca atom coordinates
and amino acid type to estimate RSA. From Table 3, we could find
that the proposed method achieved the highest average PCC than
other indexes on both test datasets TS1199, and CASP34. It shows
the advantage of our method for estimating the relative accessible
area values.

3.4 Performance on proteins with different lengths and

residues with different secondary structures
To show the predicted RSA influenced by the protein length, we plot
the Pearson correlation coefficient (PCC) between predicted RSA
and actual RSA with different protein lengths (Fig. 2). All proteins
are from TS1199. It shows that our method gets lower PCC on the
short proteins. The average length of proteins with PCC values
below 0.80 is only 45. It indicates that if the protein is too short, the
model cannot obtain useful information, using the 1D sequence
encoding and 2D residue–residue distances.

We also want to know the performance with different second-
ary structure types. Figure 3 shows the results. The helical resi-
dues achieved the highest PCC value of 0.901, followed by the
coiled residues, which achieved the PCC value of 0.891. In con-
trast, the hardest estimation RSA of the strand residues had the
PCC of 0.845.

To analyze the different performances on the different SCOP
families, average PCC values were computed on the test dataset
SCOP499 (Table 4). It shows that the proposed method,
EAGERER, achieved the highest PCC values on alpha/beta family
protein; it indicates that the alpha/beta family protein is easy to pre-
dict RSA values. The following is the alpha þ beta family. Alpha

family protein is harder to predict than beta family protein. Table 4

also shows that the proposed method achieved a higher PCC on all

proteins.

3.5 Case study
To illustrate the utility of our method, we performed a case study
using the protein (PDB ID: 1u07, Chain ID: A) with PCC 0.921,

which is of the same quality as the average PCC on the test dataset

TS1199. Figure 4 shows that the RSA values predicted by our

method is well correlated with the actual RSA values.

Table 1. The performance of EAGERER on different datasets

Dataset Average PCCa Average MAEa

Training dataset (TR3672) 0.942 0.080

Validation dataset (Val918) 0.927 0.089

Test dataset (TS1199) 0.921 0.091

aPCC, Pearson correlation coefficient; MAE, mean absolute error.

Table 2. Compared with other methods on the test dataset TS1199.

The best result is marked with the bold font.

Method Average PCCb Average MAEb

Fully connected network (NN) 0.845 0.109

Ridge regression (RR)a 0.766 0.179

Random Forest (RF)a 0.827 0.118

EAGERER (this work) 0.921 0.091

aRR with optimized parameter: alpha¼0.1; RF with optimized parameter:

n-estimator¼150.
bPCC: Pearson correlation coefficient; MAE: mean absolute error.

Table 3. Average PCC values of different indexes on the two differ-

ent test datasets. The best result is marked with the bold font.

Dataset CNa HSEb SphereConc SphereCond EAGERER

TS1199 �0.748e �0.766 0.882 0.903 0.921

CASP34 �0.768 �0.806 0.901 0.919 0.928

aContact number (CN) was calculated with the radius cutoff of 13 Å.
bHalf sphere exposed (HSE) was calculated with cutoff of 13 Å.
cSphereCon: using only the Ca atom coordinates with parameter ‘-bb’.
dSphereCon using the Ca atom coordinates and amino acids type with the

parameter ‘-Ca’.
eThe average PCC was calculated on the test dataset, except two proteins

(PDBIDs : 1t79B, 1t7fB), for which CN values of residues in the protein were

the same value. As a result, it resulted in NA in the computation of the PCCs

for the two proteins.

Fig. 2. Pearson correlation coefficient (PCC) between predicted RSA and actual RSA

on proteins with different lengths in the TS1199. x-axis: log10(Length), y-axis: PCC
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4 Discussion

The SA is a key index to find the function of proteins. Several meth-
ods were proposed to estimate the SA. However, there are certain
limitations in the practice. In this article, we proposed a novel
method to estimate the RSA using the only Ca atom distance matrix
and amino acid type.

The new method, EAGERER, was implemented using a deep
learning method. To the best of our knowledge, it is the first method
to estimate the SA using limited information with the deep learning
model. The novel method achieved a higher Pearson correlation co-
efficient than other machine learning methods and other estimators
of RSA, such as contact number (CN), half sphere exposed (HSE)
and SphereCon on two test datasets. This method will be useful for
estimating the accuracy of the protein structure and structure
refinement.

The new method achieved the highest correlation on the alpha/
beta family protein, and the lowest correlation on the alpha fam-
ily protein. The algorithm benefits from the complexity of

secondary structures than the monotonous secondary structures.
We also noted that the new method achieved lower performance
on proteins with short lengths. It may be caused by the features
used. We only considered the 1D features, one-hot encoding and
2D features, residue–residue distance. The shorter proteins are
too short to capture useful distances for our model. In the future,
we will design a new model to improve the estimation of the RSAs
for shorter proteins.

The variable size of the protein sequence is a big challenge for
protein data learning using deep learning models. Our model was
carefully designed to address this issue. In particular, the pooling
layers in the CNN block in the algorithm were removed, while the
output of the last residue block retained the same width and height.
This provides a useful way to better deal with proteins of varying
sizes to enable the deep learning network to mine the protein data.

The novel method is available at https://github.com/cliffgao/
EAGERER.
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