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ABSTRACT: Identifying drug−protein interactions (DPIs) is crucial in drug discovery, and a number of machine learning methods
have been developed to predict DPIs. Existing methods usually use unrealistic data sets with hidden bias, which will limit the
accuracy of virtual screening methods. Meanwhile, most DPI prediction methods pay more attention to molecular representation but
lack effective research on protein representation and high-level associations between different instances. To this end, we present the
novel structure-aware multimodal deep DPI prediction model, STAMP-DPI, which was trained on a curated industry-scale
benchmark data set. We built a high-quality benchmark data set named GalaxyDB for DPI prediction. This industry-scale data set
along with an unbiased training procedure resulted in a more robust benchmark study. For informative protein representation, we
constructed a structure-aware graph neural network method from the protein sequence by combining predicted contact maps and
graph neural networks. Through further integration of structure-based representation and high-level pretrained embeddings for
molecules and proteins, our model effectively captures the feature representation of the interactions between them. As a result,
STAMP-DPI outperformed state-of-the-art DPI prediction methods by decreasing 7.00% mean square error (MSE) in the Davis
data set and improving 8.89% area under the curve (AUC) in the GalaxyDB data set. Moreover, our model is an interpretable model
with the transformer-based interaction mechanism, which can accurately reveal the binding sites between molecules and proteins.

■ INTRODUCTION
The identification of drug−protein interactions (DPIs) lies at
the core of in-silico drug development. Though experimental
assays remain to be the golden standard for determining
binding affinities and modes, experimental characterization of
every possible drug−protein pair is daunting as there are over
166 billion drug-like compounds1 and over 5000 potential
protein targets.2 Alternatively, hit compounds could be
identified for given protein targets effectively and inexpensively
through computational approaches.
Many computational methods have been developed, and

these methods could be generally split into two categories:
physics-based and machine-learning methods. Physics-based
methods like molecular docking apply physics-inspired force
fields to simulate the binding of a protein and a molecule at the
atomic level and to estimate the binding free energy between
them.3 However, the performance of these methods is often

unsatisfactory due to the difficulty in assessing the solvent
contributions and conformational entropy. In addition, these
physical methods are sensitive to structural fluctuations, which
prevents them from dealing well with the flexibility of
proteins.4

On the other hand, thanks to the rapid increase of protein−
ligand binding data and the decrease of computational cost,
machine learning-based methods recently gained tremendous
progress.5−7 The general idea for this method is to integrate
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structural information from ligands, proteins, and their
interactions into a unified framework. In this case, molecules
can be characterized by molecular fingerprints, structural
descriptors, or topographies, while proteins can be described
by sequences or tertiary structures. Their representations are
then extracted by the designed neural network to obtain
abstract information and are eventually used to predict
whether and how they will bind to each other.5,8−12 Despite
a lot of previous efforts, there are a few general caveats among
these proposed models:

1. Using unrealistic data sets with hidden bias. Although
there is a large amount of experimentally reported
structure−activity relationship (SAR) data available,
data collation and cleaning are quite tedious and
laborious. Current deep learning studies either use
small data sets, such as the Human and C.elegans data
sets7 which include positive DPI pairs from DrugBank
4.113 and Matador,14 and relatively credible negative
samples from a systematic screening framework,15 or use
arbitrary benchmark with expert-defined decoys (i.e.,
negative samples were generated by fixed rules),
including DUD-E, MUV16 and so on. These data sets
unfortunately suffered from obvious chemical biases,
therefore overestimating the true accuracy of virtual
screening methods. For example, DUD-E was collected
with the intention to train structure-based virtual
screening with an extremely naiv̈e split according to
ligands. As a result, these data sets can be easily
separated by ligand information and cannot guarantee
that models learn protein information or interaction
features. Instead, the key usage of DPI is to identify hit
compounds which are unseen for the training set and
also nonhomologous to the known actives, such data sets
cannot provide fair comparisons of the proposed
methods.

2. Suboptimal representation of protein. Current
works5,10−12 normally use one-hot encoding vectors to
represent residues. Albeit useful, these approaches
inherently ignore protein topological information. In
fact, the protein topological information is crucial for
determining the binding affinity between protein and
drug in practice.17 Although the direct input of 3D
structure has been introduced in recent studies,6,18−21

they have not addressed the issue of 3D transform
invariance properly. More recently, several methods4,22

have shown that the compressed protein structural
information like 2D distance map can provide effective
signals for DPI prediction. However, the need for crystal
structures still limits their application in scenarios where
protein crystal structures are not available.

3. Lack of the high-level associations of instances.
Existing deep learning models mainly focused on the
information on the input drug−protein pairs, but
weakened the high-level information from protein−
protein associations (PPAs) and drug−drug associations
(DDAs). The significance of PPAs and DDAs derives
from a well-established hypothesis that proteins typically
bind with similar drugs,23 which is key to generalizing
DPI predictions. Earlier studies generally considered
association by using molecular fingerprinting24 techni-
ques or BLAST25 to calculate the similarity of
coevolutionary information. However, these approaches

were limited in dealing with homologous proteins and
had difficulties in dealing with unseen proteins and drugs
with novel scaffolds.

To alleviate above problems, we proposed a novel structure-
aware multimodal method (coined as STAMP-DPI) for in-
silico DPI prediction. STAMP-DPI is enabled by the following
contributions:

1. We curated a large-scale benchmark GalaxyDB specifi-
cally designed for structure-based virtual screening.
GalaxyDB was derived from ExcapeDB26 and consists
of 372 common targets with 381 021 confirmed active
and 1 634 038 confirmed inactive drug−protein data
pairs. The large data size and an unbiased training
procedure provide advantages for model building than
using a small data set.

2. For informative protein representation, we constructed a
structure-aware graph neural network method based on
predicted protein contact maps from sequence, which
leads to an informative representation of protein and
alleviates the inference problem when protein crystal
structures are not available.

3. We introduced self-supervised pretrained embeddings
for both drugs and proteins in order to strengthen the
protein/drug association signals. Our model leverages
this high-level information in a unified framework and
generates interpretable results with a transformer-based
interaction mechanism.

Finally, We provided a comprehensive performance
comparison among several state-of-the-art (SOTA) methods.
Our results demonstrated that STAMP-DPI has superior
performance over these models by two benchmark data sets.
More importantly, the model was also proven by prospective
predictions on the external data set extracted from the
AstraZeneca screening database, a real world industry data
set containing 208 958 data points.

■ METHODS
Data Set Construction. We constructed experiments

using the following two benchmark data sets for model
building and evaluation. In addition, an external test data set
from AstraZeneca was utilized to verify the generalization
capability of our model on the industrial data set.

(a) The Davis data set consists of binding affinity
information with KD (dissociation constant) values
among 72 drugs and 442 targets. In our experiments,
we used SMILES representation of 68 drugs and
sequence representation of 442 target proteins from
the DeepDTA11 training/test data set. For the Davis
data set, we viewed the DPI prediction task as a
regression task that predicts the KD values for each DPI
pair. This small data set is used to initially verify that our
model can effectively deal with the DPI prediction
problem. When we used the Davis data set for
prospective validation, we assigned the data points in
the Davis data set to two class according to the criterion
of KD ≥ 6 and viewed the DPI prediction task as a
classification task.

(b) GalaxyDB. We curated a large-scale DPI benchmark,
GalaxyDB, based on the ExCAPE-ML,27 a collection of
protein−ligand entries complied from ExCAPE-DB.
ExCAPE-ML contained 955 386 compounds, covering
526 distinct target proteins for a total of 49 316 517
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structure−activity relationship (SAR) data points. For
classification tasks, the data points were assigned to two
classes (i.e., inactive, active) according to their log-
transformed activity values (pXC50 values). A com-
pound−target record was defined to be activated if it
fulfilled the criterion of pXC50 ≥ 6 (activity ≤ 1 μM).
Since the ExCAPE-ML data set contains a large number
of (more than 45 million) data points with a pXC50 value
of 3.101 that are expert-defined negative samples with
low confidence, we excluded these data points to form a
relatively balanced and high confident benchmark set.
Subsequently, the data set was trimmed down by
removing target proteins with a sequence length longer
than 750 in order to reduce the computational cost
during the calculation of the contact map and
coevolution features for proteins and the processing of
protein features. Finally, a benchmark data set
containing 2 015 059 DPI data points, corresponding
to 632 459 compounds and 372 distinct target proteins
was constructed. We selected this benchmark data set
for the training and evaluation of our proposed model.

(c) External test data set. To test whether the model is
capable of performing real-world virtual screening tasks,
we have made prospective prediction with AstraZeneca
in-house SAR data. In particular, for targets seen in our
train set, we selected the top 30 targets according to the
performance of our model in the GalaxyDB data set and
required that each target has at least more than 100 data
points. Additionally, we also randomly selected 10
targets that are not included in our training set. In
total, we constructed an external test set which is
composed of 208 958 data points, including 172 768
data points for 30 targets seen in the training set and
36 190 data points for 10 unseen targets.

Representations of Protein and Molecule. The
representations of protein and molecule lie at the core of the
DPI task. In this section, we described the initial feature
representations of target proteins, followed by the feature
representations of molecules.
Protein Representation. The protein was represented from

the perspectives of structure and sequence features, respec-
tively. For the structural features, we used a graph to represent
spatial relations between residues, which has been proven
effective for predicting protein solubility in our previous
study.28 In this model, residues were regarded as nodes and the
predicted contact map from sequence was used as the
adjacency matrix. Node features were represented by the
Hidden Markov Matrix (HMM), position-specific scoring
matrix (PSSM), and structural features predicted from

SPIDER3.29 The PSSM and HMM features are evolutionary
information that contains the motifs related to protein
properties in protein sequences,30 where the PSSM profile
was generated by PSI-BLAST v2.7.125 with the UniRef90
sequence database after three iterations, and the HMM profile
was generated by HHBLITS v3.0.3 in aligning the UniClust30
profile HMM database31 with default parameters. The
structural features include 14 features to reflect the secondary
structure of proteins predicted by SPIDER3. The list of protein
node features can be found in the Supporting Information
Table S1. For the contact map of proteins, we made the
protein contact map by SPOT-Contact,32 which takes the
protein sequence-based and evolutionary coupling-based
information as input to predict the contact probability of all
residue pairs in one protein. Finally, we obtained a protein
graph as Gα = (Vα, Aα), where Vα ∈ Rn×f is the set of n amino
acid nodes, each node represented by f-dimension features
vector composed of HMM, PSSM, and structural features, Aα

∈ Rn×n is the adjacency matrix (contact map) for the protein
graph.
For the protein sequence feature, we also considered using

the high-level representation learned from a large collection of
unlabeled protein sequences provide by TAPE.33 TAPE is a
language model for protein representation, and it encodes each
amino acid into an embedding vector. For each embedding
vector, it is contextual and includes the sequence information
from the input protein sequence, so we embedded the protein
sequence to tape embedding with the pretrained BERT34

model in TAPE.
Drug Molecular Representation. We represented the drug

molecule as a graph to get more accurate structure information
for the molecule. In this sense, a molecular graph can be
formulated as Gc = (Vc, Ac), where Vc ∈ Rn×f is the set of n
atom nodes with each node represented by f-dimension
features vector composed of atomic properties. Here we used f-
dimension atomic features that are detailed in the Supporting
Information Table S2. Ac ∈ Rn×n is the set of edges represented
by the adjacency matrix for the molecular graph. The existence
of edges in the adjacency matrix depends on whether the
corresponding atoms in the molecule directly have a covalent
chemical bond. Besides, we also used mol2vec35 features at
graph level as a high-level representation for a molecule to
capture the DDAs.
We believe that the additional high-level representation from

pretrained embedding for proteins and molecules could
provide implicit information to make the model distinguish
different proteins and molecules. The high-level representation
provides the global similarity information for DPI models,
which describes the protein−protein association and drug−

Figure 1. Architecture of STAMP-DPI. It first processes the molecule and protein features in parallel and, then, fuses the embedding of molecule
and protein by Interaction Decoder for the DPI prediction.
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drug associations (PPAs and DDAs). The DPI models could
leverage the global similarity to measure the associations
between the seen and unseen proteins and molecules and make
full use of the features of existing data to improve the
performance of DPI prediction.
Model Architecture of STAMP-DPI. The overview

framework of our proposed STAMP-DPI network is shown
in Figure 1. The input information includes multilevel
representation for proteins and ligands. As shown in Figure
1, our model consists of three main modules: a graph
representation network for proteins (Protein GNN Encoder),
a graph representation network for molecules (Molecular
GNN Encoder), and an interactive network with a transformer
decoder for message interaction (Interaction Decoder).
Protein GNN Encoder. In our model, graph representation

of proteins and the pretrained feature encode by TAPE were
input to the Protein GCN Encoder to learn structure and
sequence representations of proteins at the same time. The
Protein GCN Encoder includes two aspects: the first is the
GCN encoder which encodes the structure information on
protein graphs. The second is an information fusion unit to
fuse the embedding information from the GCN encoder and
the high-level representation from the pretrained model. The
protein graph is represented as a combination for the contact
map and node features as input for the GCN encoder, then the
GCN encoder learns node-level outputs for the protein graph.
The GCN can be used to effectively process the graph
structure data. The propagation rule can be represented in the
normalized form as eq 1:

σ= ̃ ̃ ̃+ −H D AD H W( )l l l( 1) 1/2 1/2 (1)

where Ã = A + IN is the adjacency matrix of the graph with
added self-connection and D̃ = ∑iAii is the diagonal node
degree matrix. Wl and Hl are the learnable parameters in GCN
and the output of lth layer, respectively. σ(·) is an activation
function such as ReLU. For protein graph, H0 = Va, A = Aa. To
further extract the high-level features for protein, we used
CNN with Conv1D and gated linear unit (GLU) to fuse the
different node embedding. In addition to the structure
information from the protein graph, we also used dense layers
to encode the extra protein sequence embedding information
generated from the TAPE model. Finally, the protein graph
and sequence information were concatenated to form the
protein feature for the following Interaction Decoder module.
Molecular GNN Encoder. Similarly, the GCN was used to

encode the molecular graphs. In particular, we used the
isolated GCN but similar architecture as in the Protein GNN
Encoder to learn the node-level features for molecules and
obtain the molecule structure embedding. Considering the
different sizes in molecular graphs, we padded the graphs to
keep the consistent size for different molecules and masked the
padded information in our model. On the other hand, the
dense layers were used to encode the high-level representation
information from the mol2vec embedding, then the structure
and mol2vec embedding information were concatenated to
form the molecule feature for the following Interaction
Decoder module.
Interaction Decoder. This module is inspired by the

TransformerCPI,22 which provides a method to fuse the
embedding features of molecule and protein. A transformer36

decoder was leveraged in our Interaction Decoder module to
combine the information on proteins and molecules. The
Interaction Decoder here served as a fusion unit to capture

features useful for the interaction between molecule and
protein. The decoder mainly consists of a multihead self-
attention layer and feed-forward layer. The multihead self-
attention layer employed the multiple self-attention mecha-
nisms to extract interaction information and it can be
represented as

=Q K VMultiHead( , , ) Concat(head , head , ..., head )n0 1
(2)

where the Q, K, and V are the queries, keys, and values in the
Transformer. The term headi is the output of the ith self-
attention layer, W ∈ Rndv×ndm is a learnable parameter for fusing
attention information from different heads. n and dm is the
number of heads and the dimension of the hidden state,
respectively. The self-attention in each head calculates the
attentions by

=

QW KW VW

QW KW
d

VW

attention( , , )

softmax
( )

Q K V

Q K

k

V
Ti

k
jjjjjj

y

{
zzzzzz (3)

where the projection matrices WK ∈ Rdm×dk, WK ∈ Rdm×dk, WV ∈
Rdm×dv are learnable parameters. Compared with previous
methods of directly concatenating the protein and molecule
embedding information, we believe that this architecture can
more effectively capture the interaction between protein and
molecule embedding. Finally, we obtained the interaction
features between protein and molecule and we could calculate
the molecular interaction with a protein as follows:

∑= || ||h X xsoftmax( )
i

n

i2
2

(4)

where X is the output matrix of transformer decoder and
composed of a set of interaction vectors x1, x2, ..., xn. The ||X||2

2

represent the l2 norm for xi in interaction matrix X. Here n is
the number of a set of interaction vectors from the Interaction
Decoder. Finally, the interaction feature h is fed into a fully
connected layer and a sigmoid function and obtains the
predicted interaction probability p(ỹ) between protein and
molecule. The model would be trained by maximizing the
likelihood of regressing the training data, which means
minimizing the binary cross-entropy loss as follows:

− ̃· ̃ + − ̃ · − ̃
θ

y p y y p yarg min ( log( ( )) (1 ) log(1 ( )))
(5)

where θ are the learnable parameters of the model.
Model Training and Evaluation. Our model took protein

graphs, protein evolutionary and predicted structural features,
molecule graphs, and molecular substructure features as input,
where we converted the SMILES representation for the
molecule to graph representation through RDKit.37 The model
was implemented in Pytorch and trained on RTX 2080Ti. And
the training details for our model as follows: The hidden state
size dm are set to 64 and 256 for molecule embedding and
protein embedding, respectively. The number of graph
convolution iterations is set to 3, and the kernel size in
CNN for protein embedding is 7. For Interaction Decoder, the
number of decoder layers is set to 3, and the number of heads
in the multihead layer is set to 8. We tuned these
hyperparameters by grid searching, and the value list is
shown in Supporting Information Table S4. Apart from all the
hyperparameters mentioned above, the maximum number of
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epochs during the training process in our model is set to 50
and the batch size equals 32 in every epoch. For the
classification task, the training process will early stop when
the performance no longer improves after 5 epochs in the
validation data set. For the regression task on Davis data set,
we adopted 5-fold cross-validation to evaluate the model
performance. The data were randomly divided into 5-fold
according to protein targets, and then one fold was used as the
test set and the rest as the training set. The model was trained
with fixed 100 epoch, and finally we used the mean of metrics
on 5-fold data set as the evaluation results. Dropout is applied
in CNN and the Interaction Decoder module, the dropout rate
is set to 0.2. For the optimizer in our model, we use the
LookAhead38 optimizer combined with RAdam39 optimizer, in
which the learning rate is set to 1 × 10−4 and weight decay is
set to 1 × 10−4.
In order to evaluate the performance of our model, we

divided the Davis and GalaxyDB data sets to obtain the
training, validation and test sets, respectively. In particular, we
divided the GalaxyDB data set according to the proteins so
that the target proteins in validation and test set were not seen
in the training set. For the Davis data set, the targets which
have the same sequence in the training, validation, and test sets
were filtered out which results in 361 targets. Table 1
summarizes the split data set in detail.

For the regression task on the Davis data set, the
performances of models are evaluated using root mean square
error (RMSE), mean square error (MSE), and Pearson and
Spearman metrics. The main metric for evaluating the
prediction performance in the classification task is the area
under the receiver operation characteristic curve (ROC-AUC),
which can reflect the ability of the model to correctly
discriminate the active compounds and inactive compounds.
And, the AUC metric is also the condition for early stopping
during model training. Additionally, we measure the accuracy,
recall, precision, and F1 score metrics for evaluating the
performance of the model prediction. It is worth noting that
we determined the threshold for the above four metrics in the
test set by finding the best threshold in the validation set. We

set the search threshold in the range of 0.0−0.9 and search
with 0.001 steps to find the best threshold in the validation set
according to the F1 score.
We compared our model with the following baselines:

1. SGDRegressor is a linear model fitted by minimizing a
regularized empirical loss with Stochastic Gradient
Descent (SGD). We used it for Davis data set in the
regression task. We experimented on the concatenated
molecule and protein features. Here the molecule feature
is Morgan Fingerprint calculated by RDKit,37 and the
protein feature is the average tape embedding which
suggests that taking the mean values at the amino acid
level for original tape embedding.

2. L2-logistic regression (LR) applied a logistic regression
model on the Morgan Fingerprint and tape embedding
concatenated feature vectors, we used it for our
GalaxyDB data set in the classification task.

3. TransformerCPI8 modified the transformer architecture
with a self-attention mechanism to address sequence-
based DPI classification task, we followed the default
parameter settings in TransformerCPI and the same
training and evaluating strategies as STAMP-DPI.

4. GraphDTA10 represented molecules as graphs and uses
graph neural networks to predict drug-target affinity.
Here we compared our model with the GIN40 in
GraphDTA with default parameters. Besides, in order to
fit the binary classification task on GalaxyDB data set, we
added a sigmoid function for the last layer in the
GraphDTA network.

5. MolTrans9 is an end-to-end biological-inspired deep
learning-based framework that models the DPI process.
We followed the same hyper-parameter setting described
in the paper and compared our model with the
MolTrans on our data set.

■ RESULTS AND DISCUSSION
Performance on the Davis and GalaxyDB Data Sets.

In order to validate the effectiveness of our model, we first
tested our model on a well-defined small data set, Davis. As
shown in Table 2, our model obtained the best MSE with
0.4317, which is 7.00% lower than the TransformerCPI
(0.4642) model, the best performance baseline model.
Interestingly, we found that the performance of the complex
deep learning models on the Davis data set is not significantly
better than other traditional machine learning models, and the
strong learning ability of the deep learning model could not be
well reflected on the Davis data set. This is likely because the
Davis data set consists only of the kinase protein family with
relatively small amounts of data. We also compared the
performance of models on the PDBbind v2016 data set41 in
Supporting Information Table S3 and observed that our model
achieved the best performance to baseline models, which is

Table 1. Detailed Information for the Split Dataset (Davis is
a regression dataset)

type proteins pos neg pairs

Davis
train 231 − − 15708
valid 57 − − 3876
test 73 − − 4964

GalaxyDB
train 298 305702 1295867 1601569
valid 38 43825 197666 241491
test 36 31494 140505 171999

Table 2. Cross Validation Performance Comparisons of STAMP-DPI and Baseline Models on Davis Dataset

model RMSE (Std) MSE (Std) Pearson (Std) Spearman (Std)

SGDRegressor 0.7208 (0.0187) 0.5199 (0.0274) 0.5101 (0.0073) 0.4686 (0.0100)
GraphDTA 0.7409 (0.0149) 0.5492 (0.0221) 0.4981 (0.0172) 0.4087 (0.0185)
MolTrans 0.7688 (0.1237) 0.6063 (0.2127) 0.4591 (0.1006) 0.4215 (0.0321)
TranformerCPI 0.6805 (0.0333) 0.4642 (0.0443) 0.5809 (0.0292) 0.4542 (0.0201)
STAMP-DPI 0.6569 (0.0148) 0.4317 (0.0192) 0.6322 (0.0319) 0.5113 (0.0326)
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consistent with the Davis data set. We used these benchmark
data sets to tune the model architecture.
We further compared the performance of different methods

on the industry-scale large data set, GalaxyDB. As shown in
Table 3, the proposed model achieved the best performance in

terms of both AUC and F1, two balanced metrics. Specifically,
our model achieved an AUC of 0.8011, which is 8.89% higher
than the best baseline MolTrans (0.7357) and 12.21% higher
than the TransformerCPI (0.7139). Our model has the highest
precision and the lowest but reasonable sensitivity. It should be
noted that the thresholds of all methods were optimized for F1
values according to the validation set, and the final threshold
corresponding to LR, GraphDTA, MolTrans, TransformerCPI,
and STAMP-DPI are 0.191, 0.438, 0.360, 0.523, and 0.449,
respectively. Figure 2 compared all methods by the receiver
operating characteristic (ROC) and precision-recall (PR)
curves on the GalaxyDB test set. We could see that our
model obtained consistent results and achieved superior
performance over the other baseline models. This followed
our expectations, as the graph representation for proteins
provides richer structure information than sequence represen-
tation, our model could provide more abundant information
for molecules and proteins by combing the structure and
sequence information from pretrained embedding features,
which could effectively improve the performance of the DPI
prediction. As shown in Supporting Information Figure S3, we
plotted the sequence similarity information between the test
set and the training set, which was calculated by the Blast
tool.42 We divided the test proteins into those with low
similarity to the training set (similarity <0.4) and those with
high similarity (similarity ≥0.4). We also plotted the AUC
distribution as shown in Supporting Information Figure S2c
and calculated the average AUC for low similarity proteins

(average AUC: 0.6070) and high similarity proteins (average
AUC: 0.6730) in the test set. This results suggest that the high
similarity proteins achieve better performance than low
similarity proteins. We further plotted the AUC of proteins
sorted by the active ligand number for our model in Figure
Supporting Information S2d and observed that our method
could work well in low data but high similarity targets.

Ablation Experiments. In order to validate the con-
tribution of each component in our model, we performed
ablation experiments by removing coevolution features,
predicted contact map, or pretrained embedding features.
First, we evaluated the function of additional pretrained

embedding, which includes the sequence information with tape
embedding for proteins and substructure information for
molecules. Instead of fusing the structure information from the
protein graph and sequence information from tape embedding,
we only used the structure information of proteins as the input
features of the Interaction Decoder. We also used the structure
information of molecules only in Interaction Decoder. As
shown in Table 4, the removal of pretrained embedding
decreases the prediction performance of the model signifi-
cantly. And this ablation experiment clearly shows the
importance of pretrained embedding in the model, which
provides high-level protein sequence information and molec-
ular substructure information for model learning.
Second, we evaluated the importance of structure

information for protein in our model. In our model, the
structure information of protein mainly comes from the graph
representation for protein, which includes the amino acid node
features HMM/PSSM/structural features and the contact map
of protein. In order to comprehensively evaluate the influence
of protein structure information on model performance, we
conducted ablation experiments on protein node features and
contact maps, respectively. For the ablation experiments of the
contact map, we avoided utilizing the protein structure
information from the contact map and only used CNN to
extract and fuse the node features in protein. The results
represented in Table 4 suggest that the contact map processed
by GCN could provide efficient and rich structure information
for proteins, which results in better performance in the DPI
prediction task. However, due to the structure of proteins is
extremely complex that the predicted contact map cannot
accurately reflect the structure of proteins, we still need to
introduce additional information such as evolutionary and
predicted structural features to compensate for the information
loss of the predicted contact map. And the ablation

Table 3. Performance Comparisons of STAMP-DPI and
Baseline Models on the GalaxyDB Dataseta

model AUC precision recall F1

LR 0.6422 0.1813 0.8304 0.2977
GraphDTA 0.7136 0.2580 0.7122 0.3788
MolTrans 0.7357 0.3683 0.6248 0.4634
TranformerCPI 0.7139 0.3268 0.5989 0.4228
STAMP-DPI 0.8011 0.5097 0.5777 0.5415

aThe precision, recall, and F1 score are calculated with the best
threshold for each model.

Figure 2. Performance of different methods on the GalaxyDB test set. (a) Receiver operating characteristic (ROC) curves of prediction results. (b)
Precision−recall (PR) curves of prediction results.
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experiments have also shown that our model could significantly
improve the performance by combing the contact map and
other additional protein information. To validate the function
of protein node features in our model for DPI prediction, we
used word2vec embedding in TransformerCPI to replace the
protein node features as HMM, PSSM and structural features.
We observed that when we used the word2vec embedding as
the protein node feature, the performance has slightly
decreased. This suggests that the HMM, PSSM, and structural
features used in our model can provide better protein
information at the amino acid level compared to word2vec,
which is beneficial to the accurate prediction of the DPI
prediction task.
Performance on the Prospective Validation. In order

to verify the generalization ability of our model, we used the
model trained on the GalaxyDB set to evaluate the Davis data
set and external test data set from AstraZeneca.
For the Davis data set in prospective validation, the

experimental results were shown in Figure 3. In general, our

model consistently performed well on the test set. When the
tested proteins were observed in the training set, STAMP-DPI
achieved an AUC of 0.8813, which is 5.28% higher than the
best baseline GraphDTA (0.8371) and 8.23% higher than the
TransformerCPI (0.8143). For the unseen proteins, our model
also achieved the best AUC with 0.7073, which is 4.77% higher
than GraphDTA (0.6751) and 11.21% higher than Trans-
formerCPI (0.6360).
For the external test data set in prospective validation, the

data distribution and classification performance of our model
were given in Figure 4. As shown in Figure 4, for the seen
proteins, the average AUC on a total of 30 targets is 0.7724,
and 70% of the seen targets reached AUC ≥ 0.7. For the
unseen proteins, the average AUC on a total of 10 targets is

0.7264 and 50% of the seen targets reached AUC ≥ 0.7. We
further plotted the protein sequence similarity information
between external data set and the training set as shown in
Supporting Information Figure S4, we found that the protein
targets usually have poor performance when the data points are
insufficient and the similarities to training proteins are low.
In general, our model achieved reasonable performance on

both seen and unseen proteins, indicating that the STAMP-
DPI trained on GalaxyDB generalizes well to independent
virtual screening tasks. However, performance gaps between
seen and unseen proteins were observed both on the Davis
data set and external test data set. We argue that there might
be two potential reasons for these performance gaps. The first
one is that the chemical space for seen and unseen target
proteins is different, which makes the knowledge of chemical
spatial distribution for seen proteins learned by our model
unable to be effectively applied to unknown chemical space for
unseen proteins. In order to validate this point, we further
utilized the t-SNE method43 to visualize the distribution of
protein targets on Davis data set, which based on the tape
embedding, coevolution, and predicted structural features. As
shown in Figure S5, there are some differences in the main
distribution regions of data points between seen and unseen
proteins, which suggests the differences in chemical space
between them. The second is that the ability of our model to
learn unseen protein representations is still somewhat deficient.
The predicted contact maps and protein pretrained embed-
dings have helped us to improve our predictions for unseen
proteins, but there is still much room for improvement.

Model Interpretability. Benefiting from the Interaction
Decoder architecture module, our model is able to analyze the
interaction mechanism between the protein and molecule. The
positions focused on the self-attention mechanism can provide
a reasonable explanation for the binding activity prediction and
also help to quickly locate the key interaction sites between the
protein and molecule when performing further activity analysis.
To exemplify this, we selected two complexes from the

RCSB Protein Data Bank (PDB)44 as the representatives,
where the proteins were presented in the test of GalaxyDB. We
took the attention weight calculated with the molecular feature
as the Query and the protein feature as the Key in the last
decoder layer of the Interaction Decoder and then calculated
the mean of attention weight at the molecular dimension to
obtain the attention information on proteins. In particular, we
colored the top-weighted residues of the example proteins and
atoms of the ligand with red and compared them to the actual
protein−ligand interaction sites retrieved from the PDB. We
found that the highest-weighted amino acids and molecular
atoms overlap substantially with the real interaction sites. For
protein CA13 (UniProt ID: Q8N1Q1) in Figure 5a, the
attention bar highlights residues His95, Thr200, and Trp210,

Table 4. Results of Ablation Experiments

network HMM/PSSM/structure contact map pretrained features AUC ACC precision recall F1 best threshold

STAMP-DPI × × × 0.7139 0.7006 0.3268 0.5989 0.4228 0.412
√ × × 0.7593 0.7448 0.3874 0.6771 0.4929 0.329
× √ × 0.7282 0.6893 0.3277 0.6623 0.4384 0.392
× × √ 0.7590 0.8451 0.6057 0.4419 0.5110 0.598
× √ √ 0.7947 0.7000 0.3534 0.7697 0.4484 0.319
√ × √ 0.7649 0.8059 0.4766 0.6114 0.5356 0.311
√ √ × 0.7832 0.8178 0.5021 0.6531 0.5677 0.234
√ √ √ 0.8011 0.8209 0.5097 0.5577 0.5415 0.449

Figure 3. Performance comparisons of STAMP-DPI and baseline
models on seen and unseen protein targets on Davis data set.
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which highly overlap with the key pocket residues observed in
the cocrystal complex (PDB: 4KNM). For protein GCK
(UniProt ID: P35557) in Figure 5b, the highlighted residues
(Thr64, Ser68, Ser444) and ligand functional groups in the
importance maps show high similarity to observed interactions
in the cocrystal complex (PDB: 4DHY). The results suggest
that the model can be applied to analyze the interaction
mechanism between molecules and target proteins and inspire
researchers.

■ CONCLUSION
In this study, we selected the Davis and GalaxyDB data set as
the internal validation data set for our model, meanwhile, we
further verified the generalization ability of our model on the
external test set collected from AstraZeneca. Experimental
evaluations show that our model consistently has the best
performance on these three data sets. The ablation experi-
ments have shown that the protein graph constructed by the
contact map and amino acid node can provide richer and more

accurate structure information for DPI prediction, and we can
obtain better performance for DPI prediction when we
combine high-level pretrained information from the proteins
and molecules. Overall, we believe that our study provides a
new SOTA model for DPI prediction research. Additionally,
the benchmark data set that we constructed can be used for the
community to develop and evaluate future structure-based
virtual screening models. Combining the structure and
pretrained information for both protein and ligand provides
advantages in making DPI prediction and could be a new area
to explore in the future.

■ DATA AND SOFTWARE AVAILABILITY

The data sets and source code are available on https://github.
com/biomed-AI/STAMP-DPI.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00060.

Tables S1−S4, Figures S1−S5, and associated refs
(PDF)

■ AUTHOR INFORMATION

Corresponding Authors
Dahong Qian − School of Biomedical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China;
Email: dahong.qian@sjtu.edu.cn

Hongming Chen − Guangzhou Laboratory, Guangzhou
510000, China; orcid.org/0000-0002-8065-8333;
Email: chen_hongming@grmh-gdl.cn

Yuedong Yang − School of Data and Computer Science, Sun
Yat-Sen Universit, Guangzhou 510275, China; orcid.org/
0000-0002-6782-2813; Email: yangyd25@
mail.sysu.edu.cn

Figure 4. Information and evaluation results about the external test data set. (a) Data point distribution of individual target proteins. (b) AUC
performance of our model on an external test data set. The violin plot represents the AUC distribution of individual target protein performance for
seen and unseen proteins.

Figure 5. Attention weight visualization of pocket and ligand pairs.
(a) Attention weight of interaction for CA13 and E1E (PDB:
4KNM). (b) Attention weight of interaction for GCK and S41 (PDB:
4DHY).

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00060
J. Chem. Inf. Model. 2022, 62, 1308−1317

1315

https://github.com/biomed-AI/STAMP-DPI
https://github.com/biomed-AI/STAMP-DPI
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00060?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00060/suppl_file/ci2c00060_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dahong+Qian"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:dahong.qian@sjtu.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hongming+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8065-8333
mailto:chen_hongming@grmh-gdl.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yuedong+Yang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6782-2813
https://orcid.org/0000-0002-6782-2813
mailto:yangyd25@mail.sysu.edu.cn
mailto:yangyd25@mail.sysu.edu.cn
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00060?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00060?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00060?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00060?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00060?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00060?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00060?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00060?fig=fig5&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c00060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Authors
Penglei Wang − School of Biomedical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China;
orcid.org/0000-0002-1966-3491

Shuangjia Zheng − School of Data and Computer Science, Sun
Yat-Sen Universit, Guangzhou 510275, China; orcid.org/
0000-0001-9747-4285

Yize Jiang − Galixir, Beijing 100080, China
Chengtao Li − Galixir, Beijing 100080, China
Junhong Liu − Galixir, Beijing 100080, China
Chang Wen − Guangzhou Laboratory, Guangzhou 510000,
China

Atanas Patronov − MolecularAI, Discovery Sciences,
BioPharmaceuticals R&D, AstraZeneca, Gothenburg 405 30,
Sweden

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.2c00060

Author Contributions
○P.W. and S.Z. contributed equally to this work.
Funding
This study has been supported by the National Key R&D
Program of China (2020YFB0204803), National Natural
Science Foundation of China (61772566), Guangdong Key
Field R&D Plan (2019B020228001 and 2018B010109006),
and Guangzhou S&T Research Plan (202007030010).
Notes
The authors declare the following competing financial
interest(s): This work is done when P.W. worked as an intern
at Galixir; S.Z., Y.J., C.L., and J.L. were employees of Galixir;
and A.P. was an employee of AstraZeneca.

■ ACKNOWLEDGMENTS
We thank the Galixir team for its support and discussion, with
special thanks to Jixian Zhang, Zixuan Liu, and Da Wei for the
experimental design discussion and technical support.

■ REFERENCES
(1) Ruddigkeit, L.; Van Deursen, R.; Blum, L. C.; Reymond, J.-L.
Enumeration of 166 billion organic small molecules in the chemical
universe database GDB-17. J. Chem. Inf. Model. 2012, 52, 2864−2875.
(2) Gilson, M. K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.;
Chong, J. BindingDB in 2015: a public database for medicinal
chemistry, computational chemistry and systems pharmacology.
Nucleic acids research 2016, 44, 1045−1053.
(3) Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and
accuracy of docking with a new scoring function, efficient
optimization, and multithreading. J. Comput. Chem. 2009, 31, 455−
461.
(4) Zheng, S.; Li, Y.; Chen, S.; Xu, J.; Yang, Y. Predicting drug−
protein interaction using quasi-visual question answering system.
Nature Machine Intelligence 2020, 2, 134−140.
(5) Gao, K. Y.; Fokoue, A.; Luo, H.; Iyengar, A.; Dey, S.; Zhang, P.
Interpretable Drug Target Prediction Using Deep Neural Represen-
tation. In IJCAI; 2018; pp 3371−3377.
(6) Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes, D. R.
Protein−ligand scoring with convolutional neural networks. J. Chem.
Inf. Model. 2017, 57, 942−957.
(7) Tsubaki, M.; Tomii, K.; Sese, J. Compound−protein interaction
prediction with end-to-end learning of neural networks for graphs and
sequences. Bioinformatics 2019, 35, 309−318.
(8) Chen, L.; Tan, X.; Wang, D.; Zhong, F.; Liu, X.; Yang, T.; Luo,
X.; Chen, K.; Jiang, H.; Zheng, M. TransformerCPI: improving
compound−protein interaction prediction by sequence-based deep

learning with self-attention mechanism and label reversal experiments.
Bioinformatics 2020, 36, 4406−4414.
(9) Huang, K.; Xiao, C.; Glass, L. M.; Sun, J. MolTrans: Molecular
Interaction Transformer for drug−target interaction prediction.
Bioinformatics 2021, 37, 830−836.
(10) Nguyen, T.; Le, H.; Quinn, T. P.; Nguyen, T.; Le, T. D.;
Venkatesh, S. GraphDTA: Predicting drug−target binding affinity
with graph neural networks. Bioinformatics 2021, 37, 1140−1147.
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