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Deep learning driven biosynthetic pathways
navigation for natural products with BioNavi-NP
Shuangjia Zheng1,2,3,6,7, Tao Zeng 1,7, Chengtao Li3, Binghong Chen4, Connor W. Coley 5,

Yuedong Yang 2✉ & Ruibo Wu 1✉

The complete biosynthetic pathways are unknown for most natural products (NPs), it is thus

valuable to make computer-aided bio-retrosynthesis predictions. Here, a navigable and user-

friendly toolkit, BioNavi-NP, is developed to predict the biosynthetic pathways for both NPs

and NP-like compounds. First, a single-step bio-retrosynthesis prediction model is trained

using both general organic and biosynthetic reactions through end-to-end transformer neural

networks. Based on this model, plausible biosynthetic pathways can be efficiently sampled

through an AND-OR tree-based planning algorithm from iterative multi-step bio-retro-

synthetic routes. Extensive evaluations reveal that BioNavi-NP can identify biosynthetic

pathways for 90.2% of 368 test compounds and recover the reported building blocks as in

the test set for 72.8%, 1.7 times more accurate than existing conventional rule-based

approaches. The model is further shown to identify biologically plausible pathways for

complex NPs collected from the recent literature. The toolkit as well as the curated datasets

and learned models are freely available to facilitate the elucidation and reconstruction of the

biosynthetic pathways for NPs.
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To date, more than 300,000 natural products (NPs) have
been discovered and catalogued in libraries such as Dic-
tionary of Natural Products1 (DNP) and Super Natural II2.

Remarkably, this vast chemical space of NPs is reachable from a
few dozen, simple building blocks3,4. According to the classes of
those building blocks, there are correspondingly four well-known
biosynthetic pathways for major classes of NPs and their hybrids,
including: (1) the AA/MA (acetic acid and malonic acid) pathway
that produces fatty acids, phenols, and polyketides; (2) the MVA/
MEP (mevalonic acid or methylerythritol phosphate) pathway
that generates terpenoids and steroids; (3) the CA/SA (cinnamic
acid or shikimic acid) pathway that yields flavonoids, phenyl-
propanoids, lignans, and coumarins; and (4) the AAs (amino
acids) pathway that constructs alkaloids and peptides including
ribosomally synthesized and posttranslational modified peptides

(RiPPs) and non-ribosomal peptide (NRPs). Unfortunately, as
shown in Fig. 1a, only about 33,000 enzymatic reactions have
been characterized and confirmed, corresponding to fewer than
30,000 NPs serving as a substrate or product (data was collected
from public sources such as MetaCyc5, KEGG6 and MetaNetX7).
That is, complete biosynthetic pathways including all inter-
mediates are not established for most of the hundreds of thou-
sands of known NPs. Accordingly, there is a strong desire to
reveal the biosynthetic pathways from essential building blocks to
target NPs (namely the native NPs biogenesis).

NPs have been noted to exhibit larger structural diversity than
fully synthetic molecules and exist in a distinct chemical space8.
As a result, NPs play a significant role in drug discovery: more
than 60% of FDA-proved small molecule drugs are NPs or their
derivatives9. NPs are often the best option for seeking novel
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Fig. 1 The motivation and overview of BioNavi-NP. a The vast natural products and rare biosynthetic pathways reported to date. Natural products were
collected from DNP1 and visualized by TMAP73 (left). Biosynthetic reactions were collected from MetaCyc5, KEGG6 and MetaNetX7, and the network was
visualized by Cytoscape74 (right). The structures were represented by the nodes and similar structures converged. The edges and arrows in the
biosynthetic network represent the structural transformation. Fatty acids and others from the AA/MA pathway were colored yellow. Terpenoids and
steroids from the MVA/MEP pathway were colored blue. Flavonoids and others from the CA/SA were colored red. Alkaloids and others from the AAs
pathway were colored green. Others, such as nucleic acids and some hybrid-origin compounds, were colored black. b The protocol of BioNavi-NP to
explore biosynthetic pathways of target natural product. We trained the transformer neural networks by combining biosynthetic and organic reactions, and
four models trained with different hyperparameters form the ensemble model, which was finally used to make the single-step prediction (see details in
Methods, Supplementary Figs. 1 and 2).
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bioactive templates in human health, as many of them are critical
factors for regulating intrinsic biofunctions, especially in
plants10,11. However, obtaining commercially-relevant quantities
of NPs can be a major obstacle to their therapeutic translation,
since NPs are usually expressed in low abundances in natural
sources, and thus conventional extraction approaches are ineffi-
cient and environmentally unfriendly in most cases. Meanwhile,
many highly valuable NPs have complicated structures, making
total synthesis difficult and time-consuming. As famously
exemplified by the heterologous biosynthesis of the arteannuinic
acid12, biosynthesis and semi-synthesis of complex natural pro-
ducts have become more popular and influential strategies in the
past decade because of the theoretical advantages of lower cost
and higher yield. Nevertheless, it remains challenging to recon-
struct a heterologous biosynthetic pathway from its native path-
way. Therefore, computer-aided tools are needed for the retro-
biosynthesis analysis of target NPs, especially for the exploration
of non-native biosynthetic pathways.

To date, many efforts have been made in the field of retro-
biosynthesis13–15, which can be roughly divided into two cate-
gories of methods: knowledge-based and rule-based approaches
(Supplementary Table 1 provides an overview on popular
methods). The knowledge-based approaches enumerate possible
biosynthesis routes according to the existing reaction databases
(such as MetaCyc5 and KEGG6) and rank the suggested routes
through scoring functions such as chemical similarity16,17 and
chassis18. For complex NPs, these methods are often not
applicable when the reactions of their biosynthetic pathways are
not included in those databases. The template- or rule-based
models (e.g., RetroPath 2.019, RetroPathRL20, and so on21,22)
match the query molecule to a collection of generalized reaction
rules, i.e., subgraph patterns of molecules that highlight changes
during biochemical reactions. The rules are either summarized
manually by experts23,24 or extracted automatically from the
reaction databases25. Although rule-based methods have led to
promising results in retro-biosynthesis, a few challenges remain.
First, their ways to formulate expert-approved rules are compli-
cated and time-consuming25. Second, the degree of generality/
specificity of curated rules may lead to invalid or incomplete
proposals26. Third, they are fundamentally unable to predict
reactions beyond the rule databases27.

Recently, the development of deep learning methods has made
it possible to predict reactions without rules, where molecules
could be represented as strings (e.g., SMILES28) as input into
sequential models such as recurrent neural networks29 and
transformer neural networks30. Such techniques have been uti-
lized to predict the products of both organic31,32, and enzymatic
reactions33,34 by giving reacting substrates as input, or the reverse
for retrosynthesis prediction task35,36. These rule-free models
have shown better performance and greater generalization
potential than rule-based models in many cases35. Based on the
single-step retrosynthesis prediction, the retrosynthetic pathways
can be planned through searching techniques (e.g., Monte Carlo
tree search, MCTS), but MCTS-based methods20,37,38 are of
limited efficiency due to the required expensive online reward
estimation. More recently, Chen et al.39 reported a deep learning-
guided AND-OR tree-based searching algorithm called Retro*,
and demonstrated improved planning efficiency and solution
quality. Nevertheless, multi-step planning algorithms have not yet
been applied to NPs retro-biosynthetic planning, mainly due to
its much less available data, greater number of steps, and higher
branching ratios in the biosynthetic pathways.

Herein, we present BioNavi-NP as a practical tool to propose
NP biosynthetic pathways from simple building blocks in an
optimal fashion. As depicted in Fig. 1b, we first train transformer
neural networks to generate the candidate precursors for a target

NP. Through data augmentation40 and ensemble learning41, our
best model achieves a top-10 prediction accuracy of 60.6% on the
single-step biosynthetic test set, 1.7 times more accurate than the
previous rule-based model. Based on the single-step model, we
further develop an automatic retro-biosynthesis route planning
system (BioNavi-NP) through the deep learning-guided AND-OR
tree-based searching algorithm, which can solve the combina-
torial number of options caused by the branches of the synthetic
pathway. As a result, BioNavi-NP successfully identify biosyn-
thetic pathways for 90.2% of 368 test compounds and recover the
reported building blocks as in the test set for 72.8%, demon-
strating its potential for bio-retrosynthetic pathway elucidation or
reconstruction. For each biosynthetic step in the multi-step bio-
retrosynthetic routes, we further evaluate the plausible enzymes
through enzyme prediction tools, Selenzyme42 and E-zyme 243.
All outputs of the BioNavi-NP can be visualized by an interactive
website (http://biopathnavi.qmclab.com/), where the predicted
reaction pathways are sorted by the computational cost, length,
and organism-specific enzyme.

Results
Single-step evaluation. Multi-step retro-biosynthesis planning is
based on the backward search performed through iterative single-
step retrosynthesis predictions. Therefore, it is critical to achieve a
reliable prediction of single-step precursors at each step. Our first
task is to compare various architectures and training modes to
determine an optimal model. To train our model, we first curated
a biosynthesis data set from the public database called BioChem
(see Methods), containing 33710 unique pairs of precursors and
metabolites. From the dataset, we randomly selected 1000 pairs as
the test set, 1000 pairs as the validation set, and the remaining as
the training set. Following the previous retrosynthesis
works31,35,44, we evaluated the performance on the test set using
top-n accuracies, defined as the percentages of correct instances
among top-n predicted precursors. Considering the complexity of
biosynthesis, we further expanded the training set by retrieving
62370 organic reactions similar to these biochemical reactions
from USPTO45, the largest organic chemical reaction library
available. This strategy was inspired by transfer learning40, where
a sufficient amount of relevant data helps to improve model
robustness by learning general patterns and avoiding over-fitting.
The larger data set of 60 K natural product-like reactions is
named USPTO_NPL (see Methods for more details).

As summarized in Table 1, the transformer model directly
trained on the BioChem training set with 31,710 reactions
achieved top-1 and 10 accuracies of 10.6% and 27.8%,
respectively. The correct handling of stereochemical information
contributed to the prediction of biosynthetic reaction, as the
removal of chirality from the reaction SMILES decreased the top-
10 accuracy from 27.8% (BioChem) to 16.3% (BioChem (w/o
chirality)). When 60 K organic reactions involving natural

Table 1 Performance of single-step models by different
training strategies.

Training strategy top-N accuracy (%), N=

1 3 5 10

USPTO_NPL 0 0 0 0
BioChem (w/o chirality) 7.6 11.1 13.9 16.3
BioChem 10.6 20.1 24.5 27.8
BioChem+USPTO_NPL 17.2 30.2 41.9 48.2
BioChem+USPTO_NPL (ensemble) 21.7 42.1 52.4 60.6
BioChem+USPTO_NPL (seq2seq) 10.9 21.3 30.8 37.1
RetroPathRL 20.6 30.5 36.8 42.1
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product-like compounds were joined for training (BioChem+
USPTO_NPL), the top-1 and 10 accuracies of the model raised to
17.2% and 48.2%, respectively. The large increase in accuracies by
data augmentation indicated that organic reaction expertise was
helpful for accurately predicting biological steps. Meanwhile, the
model trained solely on NP-like organic reactions (USPTO_NPL)
did not make any correct predictions of biosynthetic precursors,
indicating that biosynthetic NPs and chemically synthesized
compounds share commonalities, but represent two distinct
structural spaces and distinct sets of reaction types. Moreover,
these results explained why existing organic retrosynthesis tools
cannot be directly used for biosynthesis prediction. An additional
improvement in accuracy was obtained by ensembling four
optimal transformer models with different training steps
(BioChem+USPTO_NPL(ensemble)), leading to top-1 and 10
accuracies of 21.7% and 60.6%, respectively. This is expected since
the ensemble procedure41 can reduce the variance of different
models’ random initializations and improve robustness.

Table 1 also showed that our model consistently outperformed
the state-of-the-art rule-based biosynthesis model, RetropathRL20,
with an increase by up to 1.1% and 18.5% in terms of top-1 and 10
accuracies, respectively. This result demonstrated the power of the
deep learning-based methods for the prediction of biosynthetic
processes, while the higher accuracy of BioChem + USPTO_NPL
than BioChem + USPTO_NPL (ses2seq) demonstrated the value
of the attention mechanism by transformer. Hereafter, we would
use the BioChem+USPTO_NPL (ensemble) as the basic single-
step prediction model if not specially mentioned.

Internal testing for multi-step planning. Next, we investigated
the performance of different multi-step planning strategies. We
integrated the above trained single-step prediction ensemble
model to navigate the multi-step bio-retrosynthesis planning and
named it BioNavi-NP. To evaluate the searching performance, we
randomly selected 368 diverse NPs with complete biosynthetic
pathways from the BioChem dataset, and compared different
methods in terms of their abilities to: (i) predict biosynthesis
routes that terminate in allowable building blocks (success rate or
solution rate), (ii) to correctly find the reported pathway exactly
as it appears in the knowledge base (hit rate of pathways), and
(iii) to correctly recover the building blocks used in the known
biosynthetic pathway (hit rate of building blocks). We introduced
the hit rate of building blocks because the pathway of ground
truth is not necessarily unique. There may be multiple pathways
between a natural product and its building blocks. Even if a
candidate pathway is not the ground truth, the candidate is also
meaningful as a non-native biosynthetic pathway or an inspira-
tion for pathway reconstruction and design. To ensure a fair
comparison, all deep learning models were limited to 100 itera-
tions and 10 expansions, while RetroPathRL20 was set to 1000
iterations and 10 expansions following its default settings. Note
that the number of expansion represents the top-N metabolites
that the model will predict in every single step, i.e., top-N in
Table 1. The maximum depth of the predicted pathways was set
to 10. By default, 40 building blocks (called the core library,
Supplementary Fig. 3) were used, and the pathway search stopped
once it met any of the building blocks.

As summarized in Table 2, BioNavi-NP outputted potential
biosynthetic pathways for 332 out of 368 target NPs (90.2%
success rate), a large improvement over the state-of-the-art retro-
biosynthesis pathway prediction tool RetroPathRL20 (52.7%).
Meanwhile, BioNavi-NP achieved 56.0% and 24.7% for the hit
rates of building blocks and pathways, remarkably outperforming
RetroPathRL (4.8% and 3.8%), respectively. It should be noted that
RetroPathRL contains the reaction rules extracted from

MetaNetX7, while all the internal test NPs were included in
MetaNetX. When changing the searching algorithm to MCTS,
BioNavi-NP (MCTS) achieved a substantially lower success rate of
34.8%, indicating the importance of searching strategy to manage
the highly-branched multi-step search. As users may prefer well-
known or user-specific building blocks in practice, we set the
building blocks of ground truth as the user-defined building
blocks (UDBs), and terminated predictions only with the UDBs.
As expected, the BioNavi-NP_UDB model increased both the hit
rates of building blocks and pathways (72.8% and 26.1%,
respectively) while decreased the success rate (74.7%). The same
trend was observed between RetroPathRL and RetroPathRL_UDB.

To guide the reconstruction of the biosynthetic pathway, it is
important to explore more than one pathway for each target NPs.
Therefore, in addition to the abovementioned hit rate of
pathways, we also counted the average number of predicted
pathways as a direct indicator for the tool’s practical use. When
selecting the output option as top-5 (see Table 2), BioNavi-NP
predicted an average of 4.9 pathways. The exploration ability was
further confirmed by the longest length (six) of the pathways
predicted by BioNavi-NP in comparison to the three by
RetroPathRL and BioNavi-NP (MCTS), indicating the ability of
our model to produce more hypothetical pathways with more
complexity.

In addition, we compared the exploration abilities and hit rates
over different NP families. For the five categories of natural
products in the test set (including AA/MA, AAs, CA/SA, MVA/
MEP and Others, as shown in Fig. 2a), BioNavi-NP achieved the
highest hit rates of pathways (54.1%) and building blocks (94.6%)
for the AA-MA category (Fig. 2b), and following were CA/SA and
MVA/MEP category. The AAs category had the lowest hit rates of
18.3% and 46.2%, respectively. This is likely attributed to the
diverse building blocks of complex structures, especially the
RiPPs and NRPs, which often consisted of more than three
building blocks (amino acids or even non-proteinogenic amino
acids). It is difficult for BioNavi-NP to decompose these complex
structures into several fragments due to the lack of such data for
training. The model performance on NPs from different
kingdoms was further investigated (Supplementary Fig. 5), where
the NPs in the internal set were manually divided into plant,
bacteria, fungi, animal and others (such as some algae like
Bacillariaceae). The results showed that the model achieved the
highest hit rate of pathway and building blocks (30.7% and 82.0%,
respectively) for the plant kingdom. This is consistent with our
results at the pathway level because the plant NPs mainly fall into
the MVA/MEP and CA/SA categories (Supplementary Table 2).
By contrast, NPs from the fungi and others had lower hit rate of
building blocks (46.1% and 41.7%, respectively), mainly due to
the fact that the majority of them in the internal set are NRPs
derived from the AAs pathway.

External testing for multi-step planning. To further evaluate the
generalizability of BioNavi-NP, we collected 25 unseen NPs
compounds (external cases) from recent publications that did not
appear in the training set or internal test set. Out of these, 22
cases successfully found at least one candidate pathway with a
success rate of 88%, roughly the same as the 90.2% in the internal
test. For the 3 remaining cases, incomplete results were still
outputted for analysis. 17 cases had correctly identified at least
one building block with the hit rate of building blocks of 68%,
higher than the 56% in the internal test (five representative cases
were shown in Supplementary Fig. 6). The complete pathways of
all these cases can be found in Supplementary Figs. 7–31, and a
web version is provided at http://biopathnavi.qmclab.com/case.
html. These suggest that BioNavi-NP can be an effective tool for
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retro-biosynthesis analysis in terms of its abilities to find building
blocks and to enumerate hypothetical biosynthetic pathways of
target NPs.

For a direct comparison with existing works, we tested BioNavi-
NP on two benchmark datasets (namely LASER and Golden
dataset) used by RetroPathRL20, which were used to evaluate the
ability to predict biosynthesis routes (success rate) and the
pathways (hit rate of pathways). For a fair comparison, we used
the same building block library (extended library) containing 437
available precursor metabolites extracted from iML1515 model46,
as used in RetroPathRL. The parameters of BioNavi-NP were set
to a maximum of 100 iterations and 10 expansions. As shown in
Supplementary Table 3, our model achieved a hit rate of 94.7%
(144/152) on the LASER test set, outperforming RetroPathRL
(83.6%) and RetroPath 2.0 (77.6%). In terms of the hit rate of
pathways, BioNavi-NP predicted exactly the ground-truth path-
way for 13 cases for a total of 20 cases in the Golden dataset,
comparable to 15 cases by RetroPathRL. Note that to achieve these
results, RetroPathRL needed to increase the iteration numbers
from 1000 to 10,000 ~ 15,000, and thus takes 9 times longer than
BioNavi-NP (123 h for RetroPathRL vs. 13.5 h for BioNavi-NP).
Hence, our method presents both high accuracy and high
efficiency. Besides, since most of the metabolites in the extended
library are well-known precursors and lie in the cytosol
compartment of microbial strains, we also included these 437
metabolites as an option in our web server.

Web deployment and case study. BioNavi-NP was implemented
in a webserver for the convenient redesign of biosynthetic path-
ways. As shown in Fig. 3a, like a widely-used organic synthesis
planning tool ASKCOS47 did, only the structure of the target
molecule is strictly required, but the default settings and list of
building block can be modified as needed. The total number of
output pathways is influenced by several options, especially the
“pathway_top_k” (default is top-10). The length of the pathways
is affected by the “Max_depth” (default is 10). One can increase
the number to a maximum of 20 upon request. These default
settings (Fig. 3a, see more details in Supplementary Method 1) are
recommended to balance the computational time and accuracy.
Predicted biosynthetic pathways are displayed in an interactive
network, in which the target molecule can be traced back to the
potential building blocks through several pathways along with the
predicted cost of each step. Known reactions and intermediates
are matched with MetaNetX7 and PubChem48, respectively, and
highlighted in the interactive network. The above annotations as
well as the number of reactions and intermediates of each path-
way are also summarized in a table, where users can re-rank the
pathways as needed. The typic result panel is shown in Supple-
mentary Fig. 32. For a predicted biosynthetic pathway, it is crucial
to identify the enzymes that will enable the reaction to take place.
Several tools exist to select candidate enzymes for novel reactions,
including Selenzyme42, E-zyme 243, BridgIT49, and BRENDA50.
We introduced Selenzyme to search for candidate enzymes for

Table 2 Comparison of performance among different models for the test set.

Methods Success rate Hit rate of building blocks Hit rate of
pathways

Longest length Avg. solutiona Time (h)b

BioNavi-NP (MCTS) 34.8% 16.3% 1.9% 3 1.0 92
RetroPathRL 52.7% 4.8% 3.8% 3 2.8 2
BioNavi-NP 90.2% 56.0% 24.7% 6 4.9 18
RetroPathRL_UDB 10.8% 5.1% 4.1% 3 2.8 3
BioNavi-NP_UDB 74.7% 72.8% 26.1% 6 4.9 28

UDB user-defined building blocks.
aDenotes the average number of pathways found, only the top-1 result is supported by the MCTS algorithm, while for RetroPathRL, it outputs all pathways it can find. The output option for Retro* is set as
top-5 (default is top-10).
bIt is an about 4-times computational time for outputting top-10 in comparison to top-5, that is, the time consuming of BioNavi-NP (if only requesting the top-3) is comparable to RetroPathRL (the
average number of pathways returned by RetroPathRL is close to 3).
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specific reactions because of its lightweight RESTful service and
additional biological metadata. As a result, pathways output by
BioNavi-NP can be further ranked by reaction similarity and the
taxonomic distance between the organism of enzyme and user-
defined organism. In addition, the hyperlink and required input
chemical information of E-zyme 2 are also provided for enzyme
prediction as an alternative. To illustrate the use of the webserver,
we selected the sterhirsutin J and glutarate for the case studies.
The server returned 6 and 10 candidate pathways, respectively.
Figure 3b shows a subset.

Sterhirsutin J is a sesquiterpenoid derivative firstly isolated from
the culture of Stereum hirsutum that has shown cytotoxicity against
K562 and HCT116 cell lines51. As shown in Fig. 3b, sterhirsutin J

were decomposed into a hirsutane-type sesquiterpene (intermediate
1) and colletorin D acid (intermediate 4) to lead the fourth and fifth
candidate pathways, respectively, where the fourth candidate
pathway was ultimately traced back to the building block farnesyl
diphosphate (3), while the fifth candidate way was a hybrid
biosynthesis style originated from the acyl CoA (5), malonyl CoA
(6), and dimethylallyl diphosphate (7). Both the fourth and fifth
candidates are confirmed biosynthetic pathways according to the
previous studies52,53. This case shows us that BioNavi-NP is capable
of dealing with complex structures including those derived from the
hybrid pathway and to trace them back to essential building blocks.

Glutarate (also called 1,5-pentanedioic acid) is an important
raw material for the chemical industry, but biobased production
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of glutarate suffers from low titers54. Herein using BioNavi-NP,
the predicted third candidate pathway belongs to one of the lysine
(8) degradation pathways55, and the seventh one is highly similar
to an experimentally reconstructed pathway for glutaconate
production56, both of which are already existed in our training
set, so it is not surprising that BioNavi-NP can predict those two
pathways which have been constructed in E. coli for glutarate
production57,58. The fourth candidate is not contained in our
training set, and it takes a successive decarboxylation strategy
from homoisocitrate (9), which is predicted to be originating
from the basic building block pyruvate (10). Interestingly, Wang
et al.59 recently established a glutarate biosynthetic pathway from
α-ketoglutarate by incorporation of a “+1” carbon chain
extension and α-keto acid decarboxylation, which covers the
fourth candidate pathway predicted herein. This case study is a
typical example to show the capability of BioNavi-NP in
exploring the biosynthetic pathways beyond the known biogen-
esis. Thus, it is useful for biosynthetic pathways redesign.

Discussion
Herein, we proposed a practical retro-biosynthesis protocol for
navigating biosynthetic pathways to complex NPs from simple
building blocks. In contrast to rule-based models, BioNavi-NP is
a fully data-driven model that is constructed based on curated
biosynthetic and organic reaction data without the need for
cumbersome or heuristic extraction of reaction templates. Com-
prehensive evaluations on internal and external test sets
demonstrate that our method achieves a high success rate (90.2%
over 368 internal molecules and 88% over 25 external molecules)
when generating biosynthetic routes to complex NPs that reca-
pitulate known pathways and building blocks, particularly in
comparison to other methods at a comparable computational
time. By combining an existing enzyme prediction tool, we fur-
ther provide a user-friendly server that can not only predict
biosynthetic pathways but also rank the biological feasibility of
these pathways according to the estimated preference of species
and enzymes. This is a valuable feature considering that template-
free methods often predict new reactions outside of current
knowledge. We have validated the potential of this webserver to
predict native biosynthetic pathways as well as redesigning
pathways for complex NPs, although we acknowledge that the
pathway scoring function is not perfect due to the limited data
availability and inherent limitations of the search algorithm.
Therefore, extra modules that link the predicted intermediates
and reactions to the known data sources were added to the
webserver to offer annotation and facilitate the re-ranking of
pathways. In this sense, we have improved the reproducibility
of the reported biosynthesis routes and the enumeration ability of
alternative biosynthetic pathways, provided an easy operational
and visualizable webserver with some key options for users to
balance accuracy and efficiency in practical use, and also sup-
plemented multiple criteria for judging the rationality of the
predicted pathways and building blocks. Future improvements
can be made by providing further information, such as the pro-
miscuity, fidelity, and diversity of enzyme catalysts, and intro-
ducing advanced enzyme prediction and design tools60–62 to aid
experimental biosynthesis.

There still remain certain challenges for the refinement of the
BioNavi-NP. For example, at present, it could not correctly pre-
dict the biosynthetic starting materials for some complex NPs
involving many building blocks or reaction steps, even though a
much longer pathway could be found compared to some other
methods (Table 2). Alternatively, a complete biosynthetic path-
way of a complex structure may be able to be predicted by
dividing it into multiple segments (by algorithm or manually) and

then merging each part. Additionally, intermediates may be
incorrect or missing in some predictions. Even so, the results may
also be practical to experimental test for many cases, since the
missing parts can be inferred by the predicted steps (such as the
dimethylallyl diphosphate in case 1 and 2, Supplementary Fig. 6),
or they can be existed in other output pathways (e.g. the fourth
and fifth candidate constitute the complete biosynthetic pathway
of sterhirsutin J, Fig. 3b). In other words, to navigate the com-
plicated biosynthetic pathways network of NPs, it is best to
consider all of the candidate pathways in the network holistically;
integration or correction may be required to design a highly-
efficient biosynthetic pathway. Furthermore, a few predicted
pathways tend to take shortcuts through small cofactor-type
molecules or by-products. In fact, efforts have been made in data
pre-processing to reduce the ambiguous role of generic com-
pounds, but there are still a small fraction of anomalous data
leading to unjustified shortcuts. Future work on integrating atom-
mapping approaches63,64 into the rule-free models will allow
better mass-balance for the single-step retro-biosynthesis
predictions.

In summary, this work combines transformer models and the
Retro* search algorithm to develop a leading-edge biosynthesis
navigator (BioNavi-NP), which can enumerate diverse biosynthetic
pathways and trace natural products back to biologically-plausible
building blocks. BioNavi-NP achieves a high success rate at gen-
erating biosynthetic routes and searching building blocks for NPs.
Therefore, it is promising for native biogenesis analysis, biosynthetic
pathway reconstruction, and rational design.

Methods
Data set. MetaNetX7 integrated a number of major resources of metabolites and
biochemical reactions including MetaCyc5, KEGG6, The SEED65, Rhea66, BiGG67

and so on. However, the information regarding reaction directionality and com-
partmentalization were generally disregarded, which are important to predict the
precursors of the NPs. So we first extracted reactions directly from MetaCyc
(version 23.5) pathway ontology and KEGG (accessed in January, 2021) pathway
maps, where the “irrelevant” agents such as cofactors and minor substrates or
products were removed. These reactions were excluded from MetaNetX (version
4.1) dataset, and following the previous work34, we derived pairs of precursors and
metabolites where the maximum common substructure exceeds 40% of the atoms
of the metabolite for the rest of the reactions. Then, multi-product reactions were
decomposed to multiple mono-product reactions with the same substrates and the
cofactors were removed. Compounds containing Coenzyme A (CoA) play an
important role in the biosynthesis of natural products especially polyketides and
lipids. Although CoA is a complex structure that contains 84 heavy atoms, it is
usually not involved in the reaction center, so the CoAs in the molecules were
replaced by “*” in the SMILES format and restored when the results were output.
Considering that the stereochemistry is often poorly annotated in the structure
databases, we firstly checked the structures in our reaction dataset. The potential
stereochemical centers exist in 15,372 out of 20,710 structures, and 10,909 (71.0%)
of them are completely annotated with the stereochemistry, 12,763 (83.0%) are
annotated with at least half of the stereochemistry. Thus the stereochemistry was
preserved in our dataset. The resulting BioChem dataset consists of 33,710 unique
pairs of precursors and metabolites, 1000 of which were selected as the test set and
another 1000 as the validation set (see Supplementary Fig. 2). Additionally, in order
to learn more syntactic rules for chemical reactions, we screened reactions with
components similar to natural products from the organic chemistry dataset for
model pre-training. Specifically, we used molecular ECFP4 fingerprints68 to select
the reactions with a maximum similarity of ≥0.8 (calculated by RDKit69) between
any component (reactants and/or products) of each reaction in the USPTO
database and the NPs from the DNP1 database (version 27.2), resulting in 60,000
chemical reaction equations. The USPTO_NPL dataset was merged with the Bio-
Chem dataset to train the single-step model.

To obtain a set of target natural products for the quantitative evaluation of a
multi-step model that contains different scaffolds, structures from the BioChem
dataset were clustered according to their biosynthetic building blocks. Then 368
target molecules with complete biosynthetic pathways (internal cases) were
randomly extracted from the different clusters, which can be further divided into five
broad categories (the Acetic Acid and malonic acid pathways, AA/MA; the
mevalonic acid or methylerythritol phosphate pathway, MVA/MEP; the cinnamic
acid or shikimic acid pathway, CA/SA; amino acids pathway, AAs; the Other
pathway, including the hybrid pathway mentioned above). Moreover, 25 unseen
natural products (external cases) whose biosynthetic pathways are unclear or not
included in the data source were chosen to evaluate the generalization of our model.
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Computational models. Given an input of a target molecule, our task is to
recursively decompose the molecule into available biogenetic precursors following
the biosynthesis scheme. In this study, a biogenetic reaction was described by a
variable-length string containing one pair of SMILES notations representing the
reactants and target compound (Supplementary Fig. 1a). Each reaction was split
into a source sequence and target sequence for model training. For example, a
biogenetic reaction for 2-Amino-5-Chlorophenol can be described as “Nc1ccc(Cl)
cc1OC(=O)O≫Nc1ccc(Cl)cc1O”, where the “Nc1ccc(Cl)cc1O” is the source
sequence, the “Nc1ccc(Cl)cc1OC(=O)O” is the target sequence. The building block
library has to be selected before the planning is started. Different from organic
synthesis and metabolic engineering, we only assigned 40 building blocks (by
default, extended and user-defined library are also available) from three major
sources amino acids, organic acids and other molecules upstream the biosynthetic
pathway of natural products (Supplementary Fig. 3), which have been proved to be
the basic components of most of the natural products3,4.

The single-step prediction was made by the transformer neural networks30,
which were built, trained and tested by Pytorch70 and OpenNMT71 framework.
Our best-performance single-step models were trained for 48 h on four GPU
(Nvidia 2080TI) on the training set, saving one checkpoint every 10,000 steps and
averaging the last five checkpoints. Hyperparameters are selected based on the
performance of the model on the validation set. A beam search procedure72 was
then used to infer multiple precursors candidates on the test set. We used the best
performance model to infer the candidate sequences of precursors with a
beamwidth of 10. As a result, the top10 candidate sequences ranked by total
probability were retained. The training details can be seen Supplementary
Method 1.

For multi-step planning, we adopt Retro*39 (Supplementary Method 1 and
Supplementary Fig. 1b) as the search engine to find high-quality synthetic routes
efficiently. Retro* is a best-first search algorithm, which exploits neural priors to
directly optimize for the quality of the solution. It translates the search as an AND-
OR tree and learns a neural search bias with off-policy data. Specifically, the search
tree T is an AND-OR tree, with molecule node as’OR’ node and reaction node
as’AND’ node. It starts the search tree T with a single root compound node, which
is the target compound t. At each iteration, it selects a node u in the frontier of T
(denoted as F ðTÞ) according to the value function. Then it expands u with the
trained single-step transformer neural networks and grows T with one AND-OR
stump. Such expansion accumulates the corresponding cost information for single-
step retrosynthesis. The cost of single-step retrosynthesis is reflected by the
confidence score (the negative loglikelihood of this reaction under transformer
model, smaller prediction cost means higher reaction probability) and the total cost
is the sum of all steps scores along the pathway.

Each time a full pathway is found during the tree expansion, the pathway is
returned, and an additional bonus is received by the node, to allow for biasing
toward similar successful pathways. At the end of the search, the most visited
pathway is returned (i.e. the best one), and all pathways are returned ranked in
order of decreasing cost. When performing multi-step evaluation on the internal
set, we set the beam size of the transformer, max route, iteration, max depth as 10,
5, 100 and 10, respectively. It is worth noting that increasing the width, depth of the
search and the number of iterations will certainly improve the accuracy, but the
time consumption will also increase exponentially.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data is collected from KEGG (https://www.kegg.jp/), MeatCyc (https://metacyc.org/),
and MetaNetX (https://www.metanetx.org/). The processed data that used to train and test the
model is available at BioNavi-NP [http://biopathnavi.qmclab.com/data.html]. The raw output
of external cases are also available at BioNavi-NP [http://biopathnavi.qmclab.com/case.html].
Source data are provided with this paper.

Code availability
BioNavi-NP can be accessed freely as the Web server http://biopathnavi.qmclab.com/.
The source code is available at Github [https://github.com/prokia/BioNavi-NP].
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