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a b s t r a c t

Relation prediction for knowledge graphs aims at predicting missing relationships between entities.
Inductive relation prediction methods have received increasing attention because of their capability of
handling unseen entities. Among the inductive methods, the subgraph-based algorithms have emerged,
which inductively predict relations using the subgraph surrounding the target entities. Despite the
effectiveness, prior subgraph-based studies rarely focus on the explainability of subgraph reasoning,
with which is critical for humans to understand and trust the prediction from GNNs. One of the reasons
for the weak explainability of subgraph-based methods is the existence of noisy nodes and edges,
which also hinders having higher performance of the model. In this paper, we present a dynamic graph
dropout algorithm that prunes irrelevant nodes and edges to find the minimum sufficient subgraph
for relation prediction. By this means, the proposed algorithm provides an explanation for which parts
of the subgraph the model derives its results from. Specifically, we design an estimation function to
evaluate the importance of the nodes and edges. Two dropout functions, i.e., soft and hard dropouts,
are elaborately designed to filter out noisy nodes and edges based on their importance. Moreover,
multiple restriction losses, including topological loss and penalty loss, are proposed to regularize the
generation of the pruned subgraph. In this way, our model seeks to preserve the topology information
in the subgraph and meanwhile maximally eliminate the redundant information. By removing noisy
information, the proposed algorithm outperforms state-of-the-art models on eight inductive datasets.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Knowledge graphs (KGs) are collections of factual information
epresented in the form of triplets [1,2]. Each triplet is orga-
ized as (s, r, t), where s and t represent the head entity and

the tail entity, and r is the relation between s and t . KGs play
an important role in various tasks due to their excellent ability
to structure complex information [3–5]. However, due to the
limitations of human knowledge and extraction algorithms, KGs
are always incomplete because some links between entities are
absent. To fulfill this absence, researchers design various algo-
rithms to reduce the gap between KGs and real-world knowledge,
which are referred to as the relation prediction or knowledge
graph completion task.

Embedding-based methods are the mainstream approaches
among all relation prediction algorithms [6–9]. After projecting
entities and relations into a low-dimensional feature space, these
algorithms learn the entity and relation embeddings, and use
those embeddings to predict missing relations. Although promis-
ing, most of the embedding-based work is transductive, assuming
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that the entities in the KGs are unchanged and ignoring the
evolving nature of KGs. In realistic scenarios, many KGs are ever-
evolving with new entities emerging over time (e.g., new users
in social media platforms) [10]. Since the embeddings of new
entities are unavailable during training, embedding-based models
cannot infer the relations for these entities. For practical appli-
cations, it is time and computationally consuming to perform
tedious retraining every time a new entity is encountered. There-
fore, the ability to infer relations for new entities without costly
retraining from scratch is needed. In contrast to embedding-
based models, another popular direction for relation prediction
is to induce probabilistic logical rules by enumerating statistical
regularities and patterns that occur in the KGs [11–13], which
is entity-independent and inherently inductive. Moreover, logical
rules provide an explanation for how the model infers rela-
tions between entities in a human-understandable way. However,
these methods suffer from scalability issues due to having a rule-
based nature or are less expressive since they do not account for
the neighborhood structure surrounding the triplets [14,15].

To further promote the progress of inductive relation rea-
soning, recent subgraph-based methods provide ways to predict
relations from the graph topology structure surrounding the tar-
get triplet [14–17]. Subgraph-based methods first extract the

enclosing subgraph surrounding the target head and tail entities,
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efine the initial node embeddings according to the topology
nformation, and finally score the subgraph using a graph neural
etwork (GNN). Since the node embedding is defined as the
opological position of each entity in the subgraph and there is
o need for domain-related knowledge of these emerging en-
ities, the subgraph-based methods are inherently inductive. In
ddition, a subgraph can be interpreted as the combination of
alid paths between two target entities, and thus, it is more
omprehensive and informative than a single rule. Despite the
ffectiveness of subgraph-based methods, few studies have at-
empted to make the predictions from subgraphs explainable.
ompared to rule-based methods, subgraph-based methods are
imilar to a black-box whose predictions are not explainable,
aking the inferred results not trustworthy. In other words, we
annot infer which parts of the subgraph these algorithms derive
heir results from.

In fact, the explainability of GNNs is significant in attain-
ng reliability of the models [18–22]. Only when we know how
he model generates predictions based on the subgraph can we
ecide whether to trust the prediction from the model. Since rela-
ion prediction relies on logical rules that are not always intuitive
o humans, generating the explanation of relation prediction for
uman understanding becomes more significant. Generally, the
eak interpretability of common subgraph-based methods lies in
he complexity of the graph structure. Compared with a single
ath, it is more difficult to explain the behavior of subgraphs in
n intuitive way. Moreover, because a subgraph can be very large,
t contains noisy information that interferes with the learning
f the model. Therefore, filtering out noisy information can be
elpful for the prediction, which is not considered in previous
lgorithms [14–16].
In this paper, we introduce an explainable subgraph-based

elation prediction algorithm that focuses on improving the ex-
lainability and performance of the model. In contrast to the
ommonly considered post-hoc explanation applied in the pop-
ular graph explanation algorithms that generates explanation
on trained GNNs [19,21,23], our algorithm manages to perform
explanations and improve the performance of relation predic-
tion simultaneously. From the perspective of improving model
performance, the proposed algorithm can filter out noisy edges
and nodes that negatively influence the prediction of relations.
Note that previous graph explanation models tend to mask either
nodes or edges [18,19,21,23]. We argue that when the noisy
nodes contain numerous neighbors, it is not easy to explicitly
mask all of the edges that connect the noisy nodes, especially in a
dense graph where the degrees of the nodes are large. Moreover,
noisy nodes can still influence the learning when generating the
graph embedding for a prediction. In contrast, when the informa-
tive nodes contain noisy edges, masking nodes alone cannot filter
out these edges. Therefore, we propose to prune the nodes and
edges simultaneously to obtain a more compact and explainable
subgraph (see Fig. 1).

Specifically, for each node and edge, we first learn an es-
timation function that comprehensively considers the relevant
information of the specific node/edge and evaluates whether it
can be dropped out. Two dropout functions, i.e., soft dropout and
hard dropout, are then elaborately designed to filter out noisy
edges and nodes, where hard dropout outputs a binary score for
nodes/edges and soft dropout outputs a continuous score that
is approximately binary. Moreover, we encourage the model to
drop edges and nodes as much as possible under the constraint of
penalty loss. Since subgraphs contain complex topological struc-
tures and relation prediction relies on logical rules that connect
target entities, dropping out some nodes might cause the trun-
cation of logical rules, especially when the degree of the node is

large. Therefore, we further develop a topological loss on the node

2

Fig. 1. The schematic diagram of the edge dropout and the node dropout.

dropout to encourage the remaining part of the pruned subgraph
to constitute a complete logical rule between target entities. By
this means, the model can seek to preserve important logical
paths for prediction and enhance the explainability. Moreover, we
also encourage the pruned subgraph to be connective instead of
separated by introducing the neighboring topological loss.

In brief, the main contributions of this paper are listed below:

• We build an inductive relation prediction framework, termed
GraphDrop, to enhance the explainability of relation predic-
tion from enclosing subgraphs. Different from previous GNN
explanation methods that explain well-trained GNNs [19,21,
23], we train the model and perform explanation dynam-
ically in an end-to-end manner, which not only generates
the prediction but also reveals how the model obtains the
prediction.
• We elaborately develop an estimation function and two

dropout functions to estimate the importance of nodes/edges
and then filter out noisy nodes/edges. We propose maxi-
mally removing nodes and edges in the subgraph via penalty
loss to find the relational inference pattern of subgraphs. In
addition, we seek to preserve the logical rules and topology
structure in the subgraph via the proposed topological loss.
• We conduct extensive experiments to evaluate the effective-

ness of our method. Moreover, we show that our subgraph-
based framework is able to infer the logical rules to perform
relation prediction in the subgraph.

2. Related work

2.1. Transductive relation prediction

Learning entity and relation embeddings for KGs has been an
active research area in recent years due to its wide applications.
Typical KG embedding models include TransE [6], Distmult [24],
ComplEx [25], ConvE [7], RotatE [26], PairRE [27], etc. These
methods learn relation and entity embeddings using the triplet
data in the KGs and then infer the possibility of target triplet.
However, they process each triplet separately without consid-
ering the semantic and structure information embedded in rich
neighborhoods of triplets. Recently, GNN-based methods have
been proposed to capture global structural information inherently
stored in KGs and shown outstanding performance [8,28–31].
However, the above approaches mostly work on transductive
settings and cannot process unseen entities. Moreover, the pre-
dictions from most of these methods are not always explainable

and credible.
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.2. Inductive relation prediction

A research direction of inductive representation learning is to
ntroduce additional attributes of entities, such as description text
r images to embed unseen entities [32–34]. Although the gen-
rated embeddings can be utilized for relation prediction, these
ethods heavily rely on the external resources which are always
navailable in real-world scenarios. To resolve this issue, several
nductive KG embedding models [35,36] are proposed to generate
mbedding of the emerging entity by aggregating information
f its existing neighbors in the original KG. Nevertheless, these
pproaches require the new nodes to be surrounded by known
odes and cannot handle entirely new entities.
Another research direction is rule-based approaches which use

bserved co-occurrences of frequent patterns in the KG to recog-
ize logical rules for each specific relation [13]. The rule-based
ethods are inherently inductive as logical rules are independent
f entities. However, these approaches suffer from scalability is-
ues and lack of expressive power due to their rule-based nature.
nspired by these statistical rule-induction approaches, several
ifferentiable rule learners including NeuralLP [12], RuleN [11],
nd DRUM [37] are proposed to learn logical rules as well as
onfidence scores from KGs in an end-to-end paradigm. However,
hey do not take account of the neighbor structure surrounding
he entities, and thus are not expressive enough when paths
etween the target head and tail entities are sparse.
Recently, to leverage the expressive power of GCNs and topo-

ogical information between the target entities to infer relation,
ubgraph-based inductive relation prediction methods have been
roposed and received very competitive results. GraIL [15] ex-
racts the enclosing subgraph between target entities, and uses an
ttentive R-GCN [29] to score the subgraph. Furthermore, CoM-
ILE [14] extracts the directed subgraph where the relation flows
rom target head entity to target tail entity, and it introduces
he bidirectional communicative message passing mechanism be-
ween edges and nodes to score the subgraph. Meta-iKG [16]
ocuses on handling few-shot relations, which proposes a meta-
earning-based inductive algorithm. TACT [17] follows GraIL [15]
o extract local subgraph between entities, and it further uses
relational correlation network to model topological patterns
f the relations. However, these methods focus little on the ex-
lainability of the prediction from subgraph and do not consider
iltering out irrelevant nodes and edges.

.3. Graph explanation

Graph Neural Netstudies (GNNs) have emerged as powerful
ools for effectively modeling graph structured data. Since GNNs
re increasingly being applied in real-world applications such as
rug repurposing [38,39], it becomes significant to ensure that
umans can understand and trust their predictions [23,40]. Only
hen humans understand how models generate predictions can
hey determine when and how much to rely on these models
nd detect potential biases or errors of the models. To address
he explainability issue, several algorithms have been proposed to
xplain the predictions from GNNs [18–20,23]. These approaches
an be roughly characterized into perturbation-based [19,21,23],
radient-based [41], and surrogate model based [42,43] methods.
hese algorithms generally focus on one of the following as-
ects: (1) the importance of the edges; (2) the importance of the
odes; (3) the importance of node features; and (4) the discovery
f graph patterns that can represent a certain class. Based on
hat types of explanations are provided, these algorithms can be

urther categorized into two main classes: instance-level meth-
ds and model-level methods. Instance-level methods provide
nput-dependent explanations for each graph. Given a graph,
3

these methods explain GNNs by identifying important features,
nodes, and edges for prediction [18–20,23,41]. In contrast, model-
level methods explain GNNs in an input-independent perspective
and focus on the general behaviors of the models. A typical
model-level explanation method is XGNN [44]. It generates graph
patterns to maximize the predicted probability for a specific class
and uses graph patterns to explain this class.

The proposed algorithm can be classified as instance-level
method, but it has major differences from other methods. To
the best of our knowledge, we are the first to provide explana-
tions from GNNs for subgraph-based inductive relation predic-
tion. Moreover, an estimation function is designed before dropout
to evaluate the contribution of each node/edge more compre-
hensively, and we seek to remove both the edges and nodes
instead of either of them via the proposed soft/hard dropout
functions. Furthermore, we design the topological loss to reg-
ularize the dropout function such that the generated pruned
graph can still preserve the necessary topological and logical
information to infer relation. Last but not least, our explanation is
not post-hoc interpretability, i.e., we train the model and generate
its explanation dynamically in an end-to-end manner. Note that
Xu et al. [45] develop an explainable GNN to conduct multi-
hop reasoning on KG. However, it differs greatly from our work.
Firstly, the task in [45] is multi-hop reasoning which uses target
head and the target relation to search for the unknown target tail.
Its generated subgraph starts from the target head and expands
until the target tail is found, where the attention mechanism
is used to control the complexity of the subgraph. In contrast,
we extract the full subgraph between target entities and then
dynamically remove nodes and edges. Moreover, the explanation
in [45] is provided by attention mechanism, while the proposed
GraphDrop is provided by the proposed dropout function.

3. Algorithm

3.1. Notations and task definition

A triplet in the knowledge graph G is denoted as (s, r, t)
where s, r , and t denote the head entity, relation, and tail entity,
espectively. Inductive relation reasoning aims to score the plau-
ibility of the target triplet (sT , rT , tT ), where the representations
f sT and tT are unavailable during evaluation. In our algorithm,
ur task is to enable the relation reasoning from the enclosing
ubgraph to be explainable and improve the performance of the
odel by filtering out noisy information.
In the architecture of subgraph-based inductive relation pre-

iction, an enclosing subgraph is used to represent the target
riplet (sT , rT , tT ). The enclosing subgraph between the target
ead sT and target tail tT entity is denoted as Gs = (V , E) where
and E ∈ V × V denote the sets of nodes and observed edges,

espectively. We use Ne to represent the number of edges in the
ubgraph. The embeddings of the nodes is denoted as N ∈ RNn×dn

here Nn is the number of the nodes in the subgraph. The relation
mbedding is denoted as R ∈ RNr×d (Nr is the number of rela-
ions), which is parameterized as learnable parameter updated by
radient descent and is shared across train and test graphs. The
ummary of notations is shown in Table 1, the overall algorithm
s summarized in Algorithm 1 and the pipeline of GraphDrop is
llustrated in Fig. 2.

.2. Subgraph extraction

In this section, we illustrate the procedure to extract the
nclosing subgraph Gs between target entities in the knowledge
raph G. Generally, the enclosing subgraph expands with the in-
rease in the hop number h, where h+1 is the maximum distance
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Table 1
Table of notations.
Notations Descriptions

(s, r, t) A triplet in the knowledge graph.
(sT , rT , tT ) The target triplet to be predicted.
N Node embedding
E Edge embedding
N0 Node embedding after dropout.
E0 Edge embedding after dropout
R Relation embedding
Ahe The adjacency matrix connecting head and edge.
Ate The adjacency matrix connecting tail and edge.
Are The adjacency matrix connecting relation and edge.
A The adjacency matrix connecting head and tail.
s The dropout value for node or edge.
l The number of iterations in GNN.
α A scalar determining the weight of the restriction losses.
β A scalar determining the weight of the topological losses.
ℓ The overall loss

Algorithm 1: GraphDrop
Input: The knowledge graph G, the target triplet (sT , rT , tT ).
utput: The prediction score S of the target triplet.
. Extract subgraph Gs for target entities in the G
. Initialize node embedding N and edge embedding E ,
k←− 0

3. Perform Edge Dropout and Node Dropout
4. While k ≤ l:
5. Update Node Embedding
6. Update Edge Embedding
7. k←− k+ 1
8. Perform Graph Readout to obtain graph embedding
9. Score target triplet using triplet and graph embeddings
10. Update the GNN and Dropout Module according to ℓ

from the target head to the target tail entity. We follow [14–16]
to set the h to 3. Specifically, for each target triplet, we extract the
h-hop neighbors of the target head and target tail. Afterwards, we
find the common entities of h-hop neighbors of the target head
and target tail. Finally we add the edges (triplets) whose head
and tail both belong to the common entities or target entities to
construct the subgraph.
4

3.3. Node/edge embedding initialization

In the inductive setting, we need to define an entity-free
initial embedding for each entity (node) in the subgraph. Here
we use the relative positional embedding to initialize the node
embedding. As adopted in GraIL [15] and CoMPILE [14], the
common approach is to initialize the node embedding by the
distance to the target head and target tail to capture the relative
position of each node in the subgraph. The node embedding for
node i is defined as N̄ i = one-hot(dsi) ⊕ one-hot(dit ) ∈ R2(h+1)

where dsi denotes the minimum distance from the target head to
ode i, dit denotes the minimum distance from node i to target
ail, and ⊕ represents the feature concatenation operation. For
dge i, i.e. (si, ri, ti), the initialized edge embedding is defined as

Ē i = N̄ si ⊕ Rri ⊕ N̄ ti ∈ R4(h+1)+d. Then N̄ and Ē are mapped
to the same dimensionality d as that of the relation embedding
using fully-connected layers, after which we obtain the mapped
node embedding N ∈ RNn×d and edge embedding E ∈ RNe×d,
espectively.

.4. Explainable subgraph neural network

Given that the enclosing subgraph is extracted, the next pro-
edure is to score the subgraph to identify the plausibility of the
arget triplet. In this section, we introduce how we get the pruned
ubgraph and use the pruned subgraph for relation reasoning.
rom a global perspective, the message passing between nodes
nd edges happens after the dropout for nodes and edges. The
ropout procedure only conducts once for the sake of model
omplexity. We first introduce the proposed dropout operation in
etail and then illustrate the message passing mechanism used in
ur algorithm.
The noisy nodes and edges in the subgraph negatively affect

he learning of logical relation rules and hinder higher perfor-
ance of GNN models. Existing studies try to identify edge im-
ortance with attention mechanisms [14,15], which can highlight
seful edges. However, these methods cannot explicitly filter out
oisy information and only tend to assign higher weights to
nformative edges. Moreover, the negative impact of noisy nodes
nd edges can severely affect the explainability of the prediction
rom subgraph, because we cannot identify which component the
odel focuses on when generating the prediction.
In contrast to previous subgraph-based methods [14–17], we

ropose a node and edge dropout module to selectively remove
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oisy information, in which way the negative impact of noisy in-
ormation can be minimized to obtain better performance. More-
ver, by pruning nodes and edges to discover the key compo-
ents, our algorithm enables the prediction from subgraph to be
xplainable. Our algorithm is also different from popular graph
xplanation models [19,21,23]. Firstly, previous GNN explana-
ion methods tend to explain a well-trained GNN and focus on
he explainability of trained GNN (i.e., post-hoc interpretability).
In contrast, we dynamically remove noisy edges and nodes in
the subgraph during the training of GNN to improve both rela-
tional prediction capability and explainability. Secondly, different
from many GNN explanation methods that mask either nodes or
edges [19,21,23], we identify the contribution of both the nodes
and edges to the prediction. Thirdly, the design of the dropout
module, including the estimation function and soft dropout func-
tion, is different from other methods (see more details in Fig. 3).
Lastly, we design topological loss to retain the connectivity and
paths between target entities in the pruned subgraph. In the
following section, we introduce the procedure to remove the
nodes and edges in detail.

3.4.1. Edge dropout
To filter out noisy edges in the subgraph, we first propose

an estimation function in the edge dropout module. Instead of
merely using the edge embedding to determine whether the edge
can be dropped as in previous studies [19,46], the estimation
function incorporates the information from the subgraph and
target triplet, such that the model can have a global view on the
subgraph and the target to comprehensively estimate whether
the edge should be removed. Mathematically, for each edge i,
we first take the embeddings of each edge, the global edge em-
bedding, and the target triplet as inputs, and then calculate the
estimated embedding of each specific edge. The procedure can be
formulated as:

Eg =
1
Ne

Ne∑
j=1

E j

e
i = Linear(E i ⊕ ET ⊕ Eg ; θL)
drop e

(1)
i = Tanh(E i − E i)
5

here ET and Eg denote the embedding of the target triplet
nd the global edge embedding respectively, Ee

i ∈ Rd repre-
ents the embedding that incorporates the information of target
riplet, global edge embedding and estimated edge, and Edrop

i is
he estimated embedding of edge i that is used to determine
he dropout value of edge i. By using the information of target
riplet to determine the noisy level of each edge, we can estimate
he relevance of edge i to the target triplet. By utilizing the
lobal edge embedding, the model can have a global view on the
ubgraph and then determine which edge is informative.
After the estimated embedding of each edge is obtained, we

emove noisy edges based on estimated embedding by the fol-
owing formula:
i, ℓpe = Dropout(Edrop

i ; θdr ) (2)

here Dropout is the dropout function parameterized by θdr ,
hich determines whether to filter out edge i based on its noisy

evel, si is the dropout value of edge i, and ℓ
p
e is the penalty

oss to encourage model to filter out as many redundant edges
s possible. The dropout function is trained across all subgraphs
o obtain a strong inductive power to identify the noisy level
f each edge. We put forward two candidates for the Dropout
unction, i.e., soft dropout and hard dropout in the following
ections. After obtaining the output si from the dropout function,
he updated embedding of the edge i can be determined:
0
i ←− si · E i (3)

here E0
i represents the updated embedding of edge i, which

ontains much less noisy information. When si is equal to 0, the
dge i is explicitly removed. The obtained E0

i is then leveraged to
onduct the message passing in the GNN.
With the proposed dropout module, our algorithm is capable

f identifying and filtering out noisy nodes and edges. In this
ay, the GNN can dynamically retain informative nodes and
dges in the subgraph and filter out redundant ones to obtain
better inference ability and enable the prediction to be more
xplainable. We illustrate the pipelines of hard dropout and soft
ropout in detail in the following sections.
Hard Dropout: The main characteristic of hard dropout is

hat it produces a binary discrete dropout value si for each
dge/node. Therefore, optimizing the model parameters with
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raditional gradient-based methods will not be feasible due to
he discrete nature of si. To tackle this issue, we utilize the
hard concrete distribution [19,47–49] to generate si and enable
the gradient-based update of the parameters. Specifically, hard
concrete distribution is a mixed discrete–continuous distribution
on the interval [0, 1]. It assigns a continuous probability to
0 or 1, and meanwhile it allows continuous outcomes in the
unit interval such that the gradient can be computed via the
reparameterization trick. The computation of si for hard dropout
is illustrated as follows:

z i = ReLU(Edrop
i W hard + bhard)+ bh (4)

ŝi = σ (
log u

1−u + z i

τ
) (5)

s̄i = (ζ − ω) · ŝi + ω (6)

si =
{
1, s̄i > 0.5
0, others

(7)

lpe =
Ne∑
i=1

σ (z i − τ · log(−
ω

ζ
)) (8)

where bh is the bias term for hard concrete distribution, W hard ∈

Rd×1 is the parameter matrix for hard dropout, σ is the Sigmoid
ctivation function, τ is the temperature hyperparameter that

controls the sparsity of the edges, ζ and ω are the hyperparam-
eters to stretch ŝi such that it is closer to Bernoulli distribution
(ζ > 1 and ω < 0), and u ∼ U(0, 1) (U denotes Gaussian distri-
bution). Notably, log u

1−u and τ are dismissed during testing [47].
p
e is the penalty loss that encourages the model to remove as
any noisy edges as possible. Via the operations in Eqs. (4)–(8), s̄i

s close to Bernoulli distribution. When computing the gradients,
he randomness is transferred to the Gaussian variable u via the
eparameterization trick, and the gradient of z i can be explicitly
omputed. For more details about the hard concrete distribution,
lease refer to [47]. Compared to using other methods such as
einforcement learning [50] to obtain the exact binary weight,
sing the hard concrete distribution is more elegant, without the
eed of adding additional optimization objectives or components.
ia the hard dropout, the model can remove noisy edges, which
annot be realized by common attention mechanisms [14,15].
Soft Dropout: The binary dropout value of hard dropout is

esirable for explainability. However, some edges may be dif-
icult to be defined precisely as useful or useless. Under such
ircumstance, we always need to obtain a more feasible dropout
alue for the ambiguous edges such that the performance and
xplainability of the model can be balanced. Therefore, in this
ection, soft dropout mechanism is utilized to get the continuous
utput value for each edge. The procedure for the soft dropout is
hown below:
i
= ReLU(Edrop

i W soft + bsoft ) (9)

i
k ←−

eλ·zik∑
j e

λ·zij
(10)

i
←− z i1, z i = [z i1, z

i
2] (11)

lpe =
Ne∑
i=1

(1− (z i1 − z i2)
2
+ β2 · z i1) (12)

where W soft ∈ Rd×2 is the parameter matrix for soft dropout,
and z i ∈ R2 is the dropout vector used to determine whether the
edge should be dropped. lp is the penalty loss that encourages
e

6

the elements of z i to be close to 0 or 1, and β2 is the coefficient
that controls the sparsity of the edge. In Eq. (10), we normalize
the dropout vector where λ is the scale factor to widen the
distance between the elements in z i [49]. In fact, we have zi1

zi2
=

λ·(zi
′

1−z
i′
2 )
= (e(z

i′
1−z

i′
2 ))λ, which suggests that the distance increases

xponentially with λ. In the visualization experiment, we show
hat this simple technique is practical and the elements of z i are
lmost binary.
It is worth mentioning that soft dropout fundamentally differs

rom the commonly-considered attention mechanism in previous
tudies [14,15]. Firstly, soft dropout introduces the scale factor
and the penalty loss lpe to reach better dropout effect by en-

ouraging the distance among elements z i to be larger so that the
lements are almost binary. Moreover, it encourages the dropout
odule to filter out as many edges as possible via penalty loss.
astly, soft dropout merely modifies the edge embedding and can
e integrated with any message passing mechanisms. Compared
o hard dropout, soft dropout is easier to be trained, which rarely
ncounters the ‘collapse’ problem (i.e., dropout values of all the
dges are the same). In contrast, the hyperparameters of hard
ropout need to be carefully designed to avoid ‘collapse’ problem.
oreover, because soft dropout allows continuous fine-grained
utput that is more expressive, its performance is expected to be
etter.

.4.2. Node dropout
The dropout procedure of nodes is similar to that of edge,

hile distinction remains. Firstly, in the estimation function, we
se the embedding of node i, the embedding of target entities,
nd the neighbor aggregation embedding to determine the noisy
evel of each node. The procedures are illustrated as follows:
nei
i = (AN )i
e
i = FC(N i ⊕ (N tT − N sT )⊕ Nnei

i ; θFC )
drop
i = Tanh(N e

i − N i)

(13)

here FC denotes the fully-connected layer, A is the node-to-
ode adjacency matrix (Aij = 1 ⇐⇒ ∃ r , triplet (j, r, i)
xists), Nnei

i is the neighbor aggregation information for node i.
drop
i is the estimated node embedding which incorporates the

nformation of node i, neighboring nodes and target entities, and
hen uses these information to comprehensively estimate the
mportance of node i. By leveraging the neighbor information,
he model can to some extent estimate the relative position of
he node in the graph. By leveraging the information of target
ntities, the estimation function is target-oriented. Note that the
arameters of node and edge estimation function are not shared.
After the estimation function, we filter out the nodes via the

oft/hard dropout function based on the output of the estimation
unction. The dropout module shares the same structure as that
f edges. However, the parameters of the dropout function are
ot shared, and the input to the dropout function becomes Ndrop

i .
fter the dropout function, we obtain a new node embedding N0

i
nd the node penalty loss ℓ

p
n.

.4.3. Topological loss
One of the main novelties of our model is the design of topo-

ogical loss to regularize the learning of the dropout functions.
ubgraph has complex topology structures, and thereby removing
node might cause a chain reaction especially when the node
as a large degree (i.e., if a node is removed, the logical con-
ection between the target entities might be lost unexpectedly).
oreover, the pruned subgraph might consist of several sub-
omponents that are not connected. Therefore, to avoid such
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hain reaction and retain the connectivity of the pruned sub-
raph, we put forward topological loss to regularize the learning
f the node dropout.
Firstly, the target entities should not be removed so that the

elation inference can be conducted. Moreover, inspired by the
raph information bottleneck [46], we hope that if one node
s retained, its neighbors should also have a higher possibility
o be retained such that the generated subgraph is connective
nstead of consisting of several disconnected sub-components.
o this end, we regularize the learning of the dropout module
o encourage the learned subgraph to be connective and target-
riented. The equation for the regularization is shown as below:

nei
topo = β · [(STAH − STAS)+ (1− ssT )+ (1− stT )] (14)

here ssT and stT are the dropout values for target head and
target tail respectively, H ∈ RNn×1 is the ones matrix whose
elements are all equal to one, S ∈ RNn×1 is the dropout matrix
for nodes (S = [s1; s2; ...; sNn ]), β is a scalar which determines
the weight of the topological loss. To be more specific, STAH
sums over the number of neighbors of the retained nodes in
original subgraph, and STAS sums over the number of neighbors
of the retained nodes in the pruned subgraph. Our algorithm
forces STAH−STAS to approximate 0 to encourage the neighbors
of the retained nodes are also retained in the pruned subgraph.
By this means, ℓneitopo adds a restriction on the local topological
structure of the subgraph and encourages the generated subgraph
to be connective. One may argue that the learning of STAH −
STAS might fall into a sub-optimal solution where all nodes are
filtered (STAH − STAS is equal to 0 under such circumstance).
Nevertheless, by adding (1 − ssT ) + (1 − stT ) into ℓneitopo, we force
the target entities to be retained and the sub-optimal solution is
not likely to happen. And due to the penalty loss, the algorithm
will prevent the dropout function from selecting all the nodes,
which is also a sub-optimal solution of STAH − STAS .

However, ℓneitopo merely reflects the 1-hop structure information
of the generated subgraph, while relation prediction relies on
multi-hop relational paths between target entities. To this end,
we further design a constraint, referred to as the connective
topological loss ℓcontopo, to encourage the pruned subgraph to still
contain the paths that connect the target head and target tail
such that the relation can be inferred according to relational
paths. Specifically, after node dropout, the updated node-to-node
adjacency matrix can be represented as: Ã = ST

⊙ (A + AT ) ⊙ S
where we define ⊙ as the expanded element-wise multiplication
of matrices. For example, for the given matrices A ∈ RNn×Nn and
S ∈ RNn×1, the expanded element-wise multiplication of these
two matrices is denoted as: ∀j ∈ [1,Nn], we have (A⊙S)i,j = Ai,j ·

S i,1 where the second dimension of S can be seen as expanded.
The equation for ℓcontopo is shown as below:

ℓcontopo = β ·
b∑h+1

i=1 Ãi
sT ,tT + γ

(15)

here h is the hop number of the subgraph, b is a constant scalar
hich is set to 32 in our experiment to scale ℓcontopo, γ is a scalar
o prevent division by 0 which is set to 1, Ã1

= ST
⊙ (A +

T ) ⊙ S, Ã2
= ÃÃT

, and Ãi
= Ãi−1ÃT

. Intuitively, if the target
ead and target tail are still connected by a i-hop path after
ode dropout, Ãi

sT ,tT is larger than 0 according to the definition
f the adjacency matrix. Notably, the algorithm will preferen-
ially reserve the nodes with more paths crossing (which are
ssumed as important), for the reason that preserving these nodes
ecreases the loss more. By minimizing ℓcontopo via the gradient
escent, we encourage the model to retain the paths connecting
 e

7

wo target entities, such that logical rules can be inferred. The
verall topological loss is the sum of ℓcontopo and ℓneitopo:

topo = ℓcontopo + ℓneitopo (16)

ecall that we also design a penalty loss for nodes which forces
he generated subgraph to have as few nodes as possible. The
enalty loss and topological loss compete with each other, and
ogether they seek to generate a subgraph that is minimal and
ufficient enough to conduct relation reasoning.

.4.4. GNN for message passing
Generally, we use the node-edge communicative updating

echanism to conduct message passing in the subgraph as in [14].
ote that the edge attention mechanism is not used in our GNN
ince we already have the dropout function.
Node Embedding Updating: The node embedding is updated

or totally l iterations. We use the edge embedding to update node
epresentations:
k
agg = AteEk−1 (17)

k
= ReLU((N k

agg + N k−1)W k
n) (18)

here Ek−1 and N k are the edge embedding at iteration k−1 and
he node embedding at iteration k respectively, N k

agg denotes the
ode aggregation information, and Ate

∈ RNn×Ne is the adjacency
atrix that connects the tail entity and the corresponding edge.
q. (17) aggregates the edge information to each node, and only
he edges whose tail is the corresponding node are selected for
ggregation.
Edge Embedding Updating: To obtain the edge aggregation

nformation and update the edge embedding, we have the fol-
owing equations:
k
agg = (Ahe)TN k

+ (Are)TR − (Ate)TN k (19)

Ek′
= ReLU(Ek−1

+ Tanh(Ek
agg )) (20)

k
= ReLU(Ek′W k

e + E0) (21)

here Ahe
∈ RNn×Ne , Are

∈ RNr×Ne is the adjacency matrix that
onnects head entity/relation and the corresponding edge, re-
pectively. Note that we add the E0 to update the edge embedding
n Eq. (21) to perform residual learning [51]. Recall that E0 is the
dropped edge embedding and N0 is the dropped node embedding.

Graph Readout: To generate the final graph representation
and then predict the score of the target triplet, we use a multi-
layer perception network followed by a Gated Recurrent Unit
(GRU) [52] to summarize the node embedding, as shown in the
following equations:

N e′
i = DNNread(N l

sT ⊕ N l
tT ⊕ N l

i; θDNNread ) (22)

e
= GRU(N e′

; θGRU ) (23)

e
=

1
Nn

Nn∑
i=1

N e
i (24)

here Ge is the graph embedding that captures the subgraph
nformation from a global perspective, and DNNread is the deep
eural network that communicates the target entity embeddings
ith all the node embeddings. This graph readout function is
ifferent from previous studies [14,15].
Scoring Function Definition: We adopt the idea of TransE [6]

nd CoMPILE [14] to design the scoring function. While differ-
ntly, we apply the graph embedding in the design of the scoring
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unction to further capture the global information of the sub-
raph, and use the global subgraph information to help infer the
elation pattern between the target triplet. All in all, the scoring
unction is defined as:

= DNN((N l
sT + RrT − N l

tT )⊕ Ge
; θDNN ) (25)

where N l
sT , RrT , and N l

tT denote the final representation of tar-
get head, target relation, and target tail, respectively. We use
a two-layer fully-connected network to process target triplet
embedding and infer the score of target triplet.

Training Scheme: We train the overall framework in an end-
to-end manner rather than adopt a two-stage training strat-
egy where GNN is first trained and then the dropout module
is trained [19,21]. The overall loss is the composition of the
predictive loss, penalty loss and topological loss:

ℓpre = max{S ′ − S + η, 0} (26)

ℓ = ℓpre + α(ℓpn + ℓpe + ℓtopo) (27)

where ℓpre is the predictive loss, ℓpn and ℓ
p
e and the penalty loss for

node and edge respectively, ℓtopo is the topological loss, and α is
a scalar that determines the importance of the restriction losses
(penalty loss and topological loss). Note that ℓpre is formatted as
the hinge-loss which aims to widen the distance between scores
of the positive and negative triplets (S ′ denotes the score of the
negative triplet and η is a positive margin). Via penalty loss, the
algorithm seeks to generate a minimal subgraph, and via the
predictive loss and topological loss, the model seeks to generate
a sufficient subgraph. Coupling together, the algorithm seeks to
find a subgraph that is free of redundancy and simultaneously
expressive enough for prediction.

4. Experiments

We evaluate the proposed GraphDrop on the widely-used
inductive datasets for relation prediction. In our experiments,
we mainly show that: (1) the proposed GraphDrop outperforms
state-of-the-art methods on the commonly-used inductive
datasets; (2) the proposed penalty and topological losses are
helpful to the overall improvement of the algorithm; (3) the
proposed dropout functions effectively filter out noisy nodes and
edges and improve the performance of GNN; (4) the proposed
dropout functions outperform other dropout baselines; (5) the
proposed algorithm can generate human-understandable expla-
nations for subgraph prediction; (6) the proposed method assigns
a low score to the majority of nodes and edges in the subgraph
and the dropout values of soft dropout approximate Bernoulli
distribution.

4.1. Dataset

FB15K-237 [53] and NELL-995 [4] are widely-used databases
for relation reasoning. We follow Meta-iKG [16] to extract four
versions of inductive datasets for each database to ensure a more
accurate evaluation of the models. In inductive datasets, we have
filtered out the triplets that have no enclosing subgraph between
the target entities as in [14,16]. The statistics of the four versions
of inductive FB15k-237 and Nell-995 datasets are shown in Ta-
bles 2 and 3, respectively [16]. Each inductive dataset consists
of train graph and test graph where the entities in the train
graph and the test graph are not overlapped, and the relations
are shared across the train and test graphs. Following the setting
of [14–16], the subgraphs of training and validation triplets are
extracted from the train graph, and the subgraphs of test triplets
are extracted from the test graph. The training triplets exist in
the train graph, while the test graph does not contain test triplets
(test graph contains the entities and relations of test triplets).
8

4.2. Experimental details

To be consistent with previous algorithms [14–16], we use
AUC-PR and Hits@10 to evaluate the models. To compute AUC-PR,
we sample one negative triplet for each test triplet. For Hits@10,
we rank each test triplet among the sampled 49 negative head/tail
triplets and evaluate whether the score of the test triplet ranks
top 10. The negative triplets are obtained by replacing the head
or tail of each test triplet with other entities. We train the model
for four times and average the testing results to obtain the final
results.

We implement our algorithm on PyTorch 1.4.0, and use Adam
[54] as optimizer with learning rate being 0.001. The hop number
h is set to 3 which is consistent with previous studies [14–16]. The
number of iterations l is set to 3. The α and β are both set to 0.01.
The feature dimensionality d is set to 32.

Baselines: We evaluate our model with the following base-
lines: GraIL [15], CoMPILE [14], Relational GAT [55], Meta-iKG
[16], and RuleN [11]. RuleN [11] is a rule-based method and the
other baselines are subgraph-based methods. For the detailed
introduction of these methods, please refer to the introduction
and related work sections. Notably, Relational GAT refers to the
implemented Graph Attention Network (GAT) [55] for inductive
relation reasoning. Since the task in this paper involves relation
embedding, we modify the procedures of the regular GAT as:

N k
←− W kN k (28)

αij =
exp(σ (ak

[N k
i ⊕ R i,j ⊕ N k

j ]))∑
g∈Ni

exp(σ (ak[N k
i ⊕ R i,g ⊕ N k

g ]))
(29)

k+1
i = Tanh(

∑
j∈Ni

αijN k
j + N k

i ) (30)

here ak
∈ R1×3·d is the attention parameter for iteration k, R i,j

denotes the embedding of the relation connecting entities i and
j, and σ is a nonlinearity function which is chosen as LeakyReLU
following [55]. The scoring function of Relational GAT is defined
as:

N ←− ⊕l
k=1N

k (31)

S = DNN(N sT ⊕ RrT ⊕ N tT ⊕ Ge
; θDNN ) (32)

where Ge is the graph embedding (see Eq. (24)). In Eq. (31), the
node embeddings from all iterations are concatenated to generate
the final node embedding.

4.3. Results and discussions

4.3.1. The performance on inductive datasets
The Comparison with baselines. In this section, we com-

pare the proposed GraphDrop with baselines on eight inductive
datasets. As presented in Tables 4 and 5, GraphDrop (both the
soft dropout and hard dropout versions) demonstrates consis-
tent improvement on the majority of the inductive datasets in
terms of both the AUC-PR and Hits@10 metrics. Specifically, for
almost all the datasets, the improvement on the Hits@10 is sig-
nificant. It is worth mentioning that our GraphDrop outperforms
the state-of-the-art method Meta-iKG by a considerable mar-
gin. Notably, both versions of GraphDrop outperform Relational
GAT [55] on all datasets, which demonstrates the superiority
of the proposed method over the attention-based method. We
argue that this is because Relational GAT merely assigns lower
weights to uninformative edges and higher weights to important
edges, while GraphDrop can directly remove noisy information
to the utmost extent by maximally filtering out noisy edges and
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Table 2
Statistics of the inductive FB15k-237 datasets.
Version Train relations Train graph Training triplets Validation triplets Test relations Test graph Test triplets

v1 183 4,245 4,040 475 146 1,993 108
v2 213 9,739 9,462 1,142 176 4,145 380
v3 218 17,986 17,703 2,179 187 7,406 779
v4 222 27,203 26,917 1,658 204 11,714 1,369
Table 3
Statistics of the inductive Nell-995 datasets.
Version Train relations Train graph Training triplets Validation triplets Test relations Test graph Test triplets

v1 14 4,687 3,610 379 14 833 81
v2 88 8,219 7,118 921 79 4,586 430
v3 142 16,393 14,453 1,848 122 8,048 686
v4 77 7,546 6,710 419 61 7,073 638
Table 4
Comparison between models (Hits@10). The best results are highlighted in bold, and the second best results are marked with underlines.
Model FB15k-237 NELL-995

v1 v2 v3 v4 v1 v2 v3 v4

RuleN [11] 65.35 71.68 67.84 70.53 53.70 69.77 64.29 57.92
Relational GAT [55] 64.78 71.58 68.29 67.64 58.64 73.72 75.43 74.11
GraIL [15] 66.52 73.82 70.15 68.30 55.56 76.40 75.66 71.24
CoMPILE [14] 66.52 72.37 69.77 70.27 62.35 76.51 75.58 68.19
Meta-iKG (MAML) [16] 66.52 72.37 68.81 74.32 60.49 74.07 77.99 71.63
Meta-iKG (Meta-SGD) [16] 66.96 74.08 71.89 72.28 64.20 77.91 77.41 73.12

GraphDrop (hard dropout) 70.43 75.13 75.67 72.75 66.05 77.91 80.32 74.61
GraphDrop (soft dropout) 68.70 76.97 76.25 76.77 67.28 81.86 82.73 77.12
Table 5
Comparison between models (AUC-PR).
Model FB15k-237 NELL-995

v1 v2 v3 v4 v1 v2 v3 v4

RuleN [11] 79.60 82.67 83.03 84.01 67.12 80.52 73.91 77.07
Relational GAT [55] 81.57 84.03 81.48 81.62 68.95 80.78 81.89 81.64
GraIL [15] 80.45 83.66 84.35 83.08 69.35 85.04 84.43 80.19
CoMPILE [14] 79.95 83.56 83.97 83.87 68.36 85.50 84.04 79.89
Meta-iKG (MAML) [16] 80.31 82.95 82.52 84.23 72.12 84.11 82.47 79.25
Meta-iKG (Meta-SGD) [16] 81.10 84.26 84.57 83.70 72.50 85.97 84.05 81.24

GraphDrop (hard dropout) 83.79 85.25 84.40 85.69 74.91 86.03 84.62 81.97
GraphDrop (soft dropout) 83.37 86.37 85.06 86.45 79.56 86.89 85.04 83.59
nodes. Moreover, we seek to preserve the topological structure
of the subgraph when pruning the subgraph, and develop es-
timation function to comprehensively evaluate the importance
of the nodes/edges, which are not considered in Relational GAT.
Overall, the results show that the proposed method achieves
marked improvement over other algorithms, which highlights the
necessity of removing noisy nodes and edges in the enclosing
subgraph.

The comparison between soft dropout and hard dropout.
s we can infer from the results in Tables 4 and 5, the soft
ropout version of the GraphDrop outperforms its hard dropout
ersion on the majority of datasets. We argue that this is because
he soft dropout version of GraphDrop is more flexible. Although
oft dropout encourages dropout values to be approximately bi-
ary, it allows continuous dropout values for nodes and edges,
hich are more fine-grained and representative. In addition, even
hough the binary dropout values generated by the hard dropout
re more interpretable, the hard dropout suffers from limited
xpressive power. In a sense, the soft dropout version of Graph-
rop can be seen as the trade-off between the performance and
xplainability.

.3.2. Complexity analysis
The main innovation of GraphDrop is to insert the dropout

odule into subgraph-based models to improve predictive per-
ormance and interpretability. The dropout module mainly con-

ists of several DNNs to perform estimation and dropout. To

9

Table 6
The comparison of model complexity on FB15k-237-v1 dataset.

The number of parameters

GraIL 28,740
CoMPILE 35,777
Meta-iKG (MAML) 35,777
Meta-iKG (Meta-SGD) 71,554

GraphDrop (hard dropout) 37,795
GraphDrop (soft dropout) 36,805

reduce the model complexity, the trainable layers in DNNs only
include one or two fully-connected layers. Moreover, the at-
tention mechanism is removed from our model, such that the
complexity of the model is reduced. Therefore, the number of
parameters only increases slightly. Quantitatively, as shown in
Table 6, the number of parameters for the hard and soft dropout
version of GraphDrop are 37795 and 36805, respectively. For
GraIL and CoMPILE, the number of parameters are 28740 and
35777 respectively, which are slightly lower than that of our
model. For the Meta-SGD version of Meta-iKG, the number of
parameters is considerably higher than that of GraphDrop. Nev-
ertheless, the performance of our model still is better than that of
Meta-iKG. All in all, the model complexity slightly increases after
the injection of the dropout module.
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Table 7
Ablation Studies on Inductive Datasets.

FB15k-237-v1 NELL-995-v1

AUC-PR Hits@10 AUC-PR Hits@10

W/O Edge Dropout 80.27 67.39 74.47 65.43
W/O Node Dropout 80.36 66.52 74.06 64.20

W/O ℓ
p
n 80.73 66.52 70.66 61.11

W/O ℓ
p
e 79.25 68.26 74.17 67.28

W/O ℓtopo 80.73 64.35 73.51 62.35

GraphDrop (soft dropout) 83.37 68.70 79.56 67.28

4.3.3. Ablation studies
We conduct extensive experiments to evaluate the effective-

ess of various components in this section, and the results are
hown in Table 7. Note that here we present the results of the soft
ropout version of GraphDrop because of its better performance,
nd similar results are observed on the hard dropout version.
irstly for the dropout module, we remove it from our model
o analyze its contribution (see the cases of ‘W/O Edge Dropout’
nd ‘W/O Node Dropout’ in Table 7). Moreover, we evaluate the
ontribution of the proposed losses, namely node penalty loss,
dge penalty loss, and topological loss (see the cases of ‘W/O ℓ

p
n’,

W/O ℓ
p
e ’, and ‘W/O ℓtopo’).

From Table 7 we find that GraphDrop significantly outper-
orms its counterpart whose edge dropout module is removed,
emonstrating the effectiveness of the proposed edge dropout.
pecifically, edge dropout yields over 1.5% and 3.5% improve-
ent on Hits@10 metric on the FB15k-237-v1 and NELL-995-v1
ataset, respectively. The performance drop on the AUC-PR metric
s even more significant. Similar performance decrease is ob-
erved when the node dropout is removed. These results suggest
hat it is of great significance to consider filtering out noisy
nformation that interferes with the relation prediction in the
ubgraph. Note that here we only remove either edge dropout or
ode dropout. Please refer to Section 4.3.4 for the results of the
ull removal of dropout module.

Moreover, from the results in Table 7, we can notice that the
erformance drops when any of the proposed losses is removed.
pecifically, the removal of ℓ

p
e brings smaller impact than the

removal of ℓ
p
n, indicting that noisy nodes have more severe in-

fluence on the prediction of the model. Moreover, the removal
of ℓtopo brings even more negative impact on the performance of
the model than that of the removal of node dropout. It indicates
that the commonly-considered regularization, i.e., encouraging
the model to remove as many nodes as possible, is not neces-
sarily effective from the perspective of performance. Therefore,
we should add a restriction on the topological structure of the
pruned subgraph such that the relation can be inferred and the
performance of the overall system can be improved.

4.3.4. Comparison of the dropout functions
In this section, we evaluate the performance of different

dropout functions to demonstrate the superiority of the proposed
hard/soft dropout functions. Specifically, we choose two dropout
baselines, i.e., random dropout and no dropout for comparison.
Moreover, we compare the hard/soft dropout with another ver-
sion of dropout function that only uses the node/edge embedding
to estimate the importance of the corresponding node/edge (see
the case of ‘Hard Dropout (W/O Estimation)’ and ‘Soft Dropout
(W/O Estimation)’).

From the results in Table 8, we can notice that the model
with the proposed dropout functions outperforms its counter-
part without dropout on both datasets by a significant margin.
Notably, the model without dropout (node dropout and edge

dropout are both removed) performs considerably worse than its

10
Fig. 4. Performance discrepancy under different hyperparameter settings on
FB15k-237-v1 dataset.

counterpart that either edge or node dropout is removed (see
Table 7), indicting that only using node or edge dropout is still
beneficial to the performance. As for random dropout, combining
the results from both datasets, the model with 10% random
dropout performs best, and it slightly outperforms the model
without dropout (possibly due to the reason that dropout can re-
duce overfitting). Nevertheless, our model with hard/soft dropout
still outperforms it by over 3% and 7% on the Hits@10 metric
in FB15k-237-v1 and NELL-995-v1 dataset respectively. Further-
more, the hard/soft dropout without the proposed estimation
function obtains better results and outperforms the random/no
dropout, which demonstrates the effectiveness of learning a well-
designed estimation function. However, it is still inferior to the
model equipped with the proposed estimation function, suggest-
ing that combining the relevant information of the edge/node and
global information of the subgraph is beneficial to evaluate the
importance of each edge/node. These results demonstrate that
each component of the proposed dropout functions is important
to the overall improvement of the model.

4.3.5. Hyperparameter evaluation
In this section, we investigate the influence of two hyperpa-

rameters in our architecture, namely α and β , and the results are
shown in Fig. 4. Recall that α is the hyperparameter to control
the weight of the overall restriction losses, and β controls the
weight of the topological loss. The default values of α and β are
oth set to 1etmin2. From Fig. 4 we can infer that α should be
moderate value, and the model reaches the best performance
hen α is set to 1etmin3. As α becomes smaller, the model per-

ormance drops significantly, mainly because the influence of the
roposed restriction losses becomes weaker and the optimization
egenerates into a regular supervised optimization where only
he predictive loss takes effect. In contrast, when α is 1, the
performance of the model is also not that impressive because the
restriction losses dominate the learning and weaken the influence
of predictive loss.

As for β , the model reaches a better performance when β is
1etmin2 or 1etmin3. When β is set to 1, the model performs
poorly because the topological loss dominates the learning of
the restriction losses. We observe that when β is set to a large
value, the optimization of topological loss will fall into a sub-
optimal solution where dropout values of the nodes and edges all
become 0 or all become 1 (see the analysis in Section 3.4.3). Under
such circumstance, the dropout module will have no effect and
even negatively influence the prediction of the model, and thus
the performance drops significantly. These results reveal how the
restriction losses work.

4.3.6. Subgraph provides explanation
To demonstrate that the proposed model can explicitly filter

out irrelevant nodes/edges and provide explanations of subgraph
reasoning, we perform a case study where visualizations of the
original subgraphs and pruned subgraphs are provided. The vi-
sualization results are presented in Fig. 5. Note that the pruned
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Table 8
The comparison of dropout functions. For random dropout, we employ a regular dropout layer
on edge/node embeddings. For the ‘W/O Estimation’ version of hard/soft dropout, we replace the
estimation function (Eq. (1)) with the following operation: Edrop

i = Linear(E i; θL), and the estimation
function for node dropout vice verse.

FB15k-237-v1 NELL-995-v1

AUC-PR Hits@10 AUC-PR Hits@10

Random dropout (10%) 80.41 65.65 70.73 58.26
Random dropout (50%) 79.76 62.61 73.95 59.88
Random dropout (90%) 79.50 64.78 67.91 58.02
No dropout 81.05 63.91 71.43 58.02
Hard dropout (W/O Estimation) 82.00 64.78 73.44 61.73
Soft dropout (W/O Estimation) 79.91 66.96 73.85 61.73

Hard dropout 83.79 70.43 74.91 66.05
Soft dropout 83.37 68.70 79.56 67.28
Fig. 5. Visualization of the original subgraphs and the pruned subgraphs. The data are taken from the FB15k-237-v1 dataset.
e
f
w

g
s
t
r

ubgraph is generated by the hard dropout version of GraphDrop,
nd similar visualization results are observed on the soft dropout
ersion if we do not visualize the edge/node whose dropout value
s smaller than 0.5. It can be observed that the proposed method
an cut a subgraph that contains a great deal of nodes and edges
nto a small subgraph, which only contains the target head node,
arget tail node and a few important paths between them. By
his means, we can easily analyze how the model generates the
rediction and which component of the subgraph it relies on.
Looking closer into subgraph#1, the target triplet for sub-

raph#1 is (5791, 31, 5786) where relation#31 is ‘music /genre/
rtist’. The subgraph contains another relation#2 ‘people/person/
rofession’ (note that the entity number does not have actual
eaning). It can be inferred from Fig. 5(b) that the profession
f entity#5786 is entity#5789. And the entities share the same
rofession with entity#5786 are all connected to entity#5791 via
he relation#31 ‘music/genre/artist’, which indicates the genre of
hese entities is entity#5791. Therefore, the model infers that
he genre of entity#5786 is also entity#5791 as relation#2 and
elation#31 are highly related, and thus the model assigns a high
core to target triplet (5791, 31, 5786). An even more simple case
s subgraph#2. The target triplet for subgraph#2 is (3180, 138,
196) where relation#138 is ‘location /country/ official_language’.
he pruned subgraph contains the triplet (3196, 53, 3180) where
elation#53 is ‘language/human_language/countries_spoken_in’.
11
By looking at the pruned subgraph, the model attains the knowl-
edge that country#3180 speaks language#3196. Therefore, the
model infers that it is of high possibility that the official lan-
guage for country#3180 is language#3196 and thus it assigns
a high score to the target triplet. The visualization to some ex-
tent suggests that the subgraph prediction from our model is
explainable.

4.3.7. Analysis of dropout values
Fig. 6 presents the pie charts for the distributions of dropout

value si generated by hard and soft dropout functions. For hard
dropout, we present the proportion of nodes/edges with dropout
value being 0 or 1. For soft dropout, we present the proportion of
nodes/edges whose dropout value is within [0, 0.001), [0.001, 0.1),
[0.1, 0.9), [0.9, 0.999), and [0.999, 1]. From Fig. 6 we can conclude
that the majority of edges and nodes are filtered out in both the
hard and soft dropouts, mostly due to the penalty loss lpe /l

p
n that

ncourages the sparsity of the subgraph. It indicates that only a
ew informative edges/nodes are retained for relation reasoning,
hich greatly reduces the difficulty of interpreting the prediction.
Moreover, observing Fig. 6, we can find that the dropout values

enerated by soft dropout are more expressive. In other words,
oft dropout can assign a moderate weight between 0 and 1 to
he ambiguous edges/nodes such that they will not be explicitly
emoved, and the contribution of edges/nodes can be highlighted
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Fig. 6. The pie charts for dropout values of hard and soft dropouts. The subfigures illustrate the distributions of dropout values for edges and nodes in a batch of
esting subgraphs from FB15k-237-v1 dataset.
r suppressed differently according to their importance in soft
ropout. In addition, for soft dropout, we can observe that the
istribution of dropout values of the majority of nodes/edges
pproximates the Bernoulli distribution. For instance, the propor-
ion of nodes whose dropout value is within [0, 0.001) or [0.999,
] is over 95%, and the proportion of edges whose dropout value is
ithin [0, 0.1) or [0.9, 1] is over 90%. This is because we introduce
he scale factor λ and the penalty loss to encourage si to be 0 or
, which differs from existing attention mechanisms [14,15,55].
t indicates that apart from highlighting important nodes/edges
s in attention mechanisms, our soft dropout can reach better
ropout effect for noisy nodes/edges. Interestingly, we notice that
he model tends to filter out more nodes than edges. This is
onsistent with the results in Table 7 that reveal filtering out
odes brings more benefit. We speculate that this is because the
odes generally are connected with many edges, and filtering
ut a node can remove much noisy information as the edges
onnecting the node are also removed.

. Conclusion

In this paper, we present a framework for subgraph-based
nductive relation reasoning which dynamically prunes the nodes
nd edges to generate a subgraph that is small but sufficient
nough for relation prediction. We propose hard dropout and
oft dropout to filter out nodes and edges, and introduce topo-
ogical loss to regularize the pruned subgraph to preserve the
opology information. Extensive experiments suggest that our
odel can effectively filter out noisy information and obtain a
igher performance on relation prediction via the introduced
ard/soft dropout. Moreover, we show that the prediction from
he generated subgraph is highly explainable.
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