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Abstract—Protein design energy functions have been developed
over decades by leveraging physical forces approximation and
knowledge-derived features. However, manual feature engineer-
ing and parameter tuning might suffer from knowledge bias.
Learning potential energy functions fully from crystal structure
data is promising to automatically discover unknown or high-
order features that contribute to the protein’s energy. Here we
proposed a graph attention network as an energy-based model for
protein conformation, namely GraphEBM. GraphEBM is equiv-
ariant to the SE(3) group transformation, which is the important
principle of modern machine learning for molecules-related tasks.
GraphEBM was benchmarked on the rotamer recovery task
and outperformed both Rosetta and the state-of-the-art deep
learning based methods. Furthermore, GraphEBM also yielded
promising results on combinatorial side chain optimization,
improving 22.2% χ1 rotamer recovery to the PULCHRA method
on average.

Index Terms—protein conformation, protein side chain,
energy-based model, graph attention network, deep learning,
group equivalence

I. INTRODUCTION

Proteins are chain-like polymers composed of a sequence
of dehydration condensed amino acids. Most native proteins
folded into stable conformations. According to Anfinsen’s
thermodynamic hypothesis, the native state is the one with
the lowest free energy [1], [2]. This hypothesis inspired the
application of potential energy functions in protein structure
prediction [3]–[5] and protein rational design [6]–[9]. The
direct optimization of physical energy function composed of
complex force fields suffered from the rough energy landscape
[10]. Therefore, researchers have developed the statistical
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potential methods [4], [11], [12] that data-driven fit energetic
terms combined with physically motivated force fields. After
several decades of development, to-date energy functions for
protein design have incorporated extensive feature engineering,
extracting physical and biochemical knowledge-based features
that contributed to the protein’s energy [13], [14]. Deep
learning has been shown to have the ability to capture the
hidden high-order dependencies between source and target
[15]. A number of deep-learning based methods including our
previous works have successfully leveraged the deep learning
methods in the field of protein design [16]–[18], protein
engineering [19], [20] and protein structure prediction [21],
[22]. Therefore, it is promising to learn protein energy function
fully from crystal structure data by deep learning methods.

Du et.al. took an initial step toward fully learning protein
energy function from data [23]. They leveraged Transformer
[24] as a energy-based model [25] for protein side chain
conformation. Since the major degrees of freedom in protein
conformation are the dihedral rotations [26], they evaluated
their method on the side chain rotamer recovery task, where a
number of side chain conformations are sampled conditioned
on the local structure context and the one with lowest predicted
energy is picked as the predicted conformation. However, we
argue that their architecture is not equivariant to the SE(3)
group transformation, which means that their architecture is
not guaranteed to output the same energy value after rigid
rotation or translation on a protein conformation. SE(3) group
equivariance has been a principle of modern machine learning
on molecule-related tasks [27], [28]. Several SE(3) equivariant
architectures have been developed for protein design [29], [30]
but they focused on residue-wise backbone structures instead
atomic conformation. The directional message passing neural
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network (DimeNet) [31], [32] is an atomic resolution SE(3)
equivariant architectures for small molecular graphs. However,
DimeNet has not been refined for protein-related tasks and
it suffered from training gradient exploding for the sampled
conformation without physical constraints.

Here we propose GraphEBM, to our best knowledge, the
first SE(3) equivariant energy-based model for protein side
chain conformation. We tested GraphEBM on the side chain
rotamer recovery task through two different sampling strate-
gies. On average, for both sampling strategies, GraphEBM
outperformed two well-known energy function of Rosetta
[14], [33] and the state-of-the-art deep learning based method
[23]. As a further study, we then applied GraphEBM on
combinatorial side chain optimization for a fixed backbone
[34], [35]. Starting from the protein conformation yielded
by PULCHRA [36], we simply adopted a naive strategy to
solve the combinatorial optimization problem. To this end,
22.2% optimized side chain conformations were obtained by
GraphEBM on average, showing the potential application of
GraphEBM on the general problem settings of protein rational
design.

To summarize, our contributions are as follows:

• We proposed the first SE(3) equivariant energy based
model for protein side chain conformation.

• We refined the massage aggregating architecture of
DimeNet by combining it with Graph Attention Network
(GAT).

• To overcome the training gradient exploding problem
of DimeNet, we added a smooth factor in the Bessel
function with theoretically and experimentally analysis
of its influence on the performance of gradient descent
optimization.

II. METHODS

The goal is to score the side-chain conformation for a given
fixed target backbone structure. This section describes the
procedure of side-chain scoring, the architecture of the model,
the setting of the smooth factor and the training strategy.

A. Preliminary

Proteins are large biomolecules and macromolecules com-
posed by one or more long chains of amino acid residues.
The protein structure can be viewed as a molecule graph with
atoms as nodes and covalent bonds as edges. We abstract the
conformation as a graph G = (V,E). G is an undirected graph
with a set V of nodes and a set E of edges. The model is
to score the graph G. Fig 1 shows the graph input and the
architecture of GraphEBM. The red color atoms are variable
atoms and the orange are the atoms selected, and they with
their bonds compose the input graph.

1) Selection of input nodes: The input graph contains atoms
with distance < 5Å to any atom of the conformation of the
given residue.

2) Representations of input: The input graph of the local
conformation consists of node features: (i) atom types (N, C,
O, S); (ii) residue types (which of the 20 types of amino acids
the atom belongs to); (iii) atom indicator (indicate if an atom
is variable), and atom bonds as edges.

B. Model architecture

Our model is based on the DimeNet++, which uses the
Schrödinger equation and density functional theory. Its fea-
tures are extracted from the geometry relations by radial
basis function(RBF) and the spherical Bessel functions(SBF).
RBF using distance and SBF using distance and angles are
both SE(3)-Equivariance which avoiding expensive data aug-
mentation strategies [37]. The embedding layer generates the
inital message embeddings using the atom types. Then, the
interaction module, combination of complex linear layers and
directional message passing, update the the embedding from
embedding layer or upper network. The interaction module
also outputs scalars for the energy of this layer.

Our model GraphEBM described by Fig 1, improves the
DimeNet++ and extend its capabilities to the energy prediction
of proteins. We update the embedding layer for residue types
which can’t be embedded before and introduce GAT and MLP
to learn the atom bonds ignored in DimeNet++. The RBF and
SBF focus on the distance and angles between atoms. The
RBF is defined by

ẽ
(ji)
RBF,n(d) =

√
2

c

sin nπ
c d

d
(1)

where n ∈ [1 . . . NRBF ] denotes the order of RBF, c denotes
cutoff distance to consider their interactions and d denotes the
distance between atom i and j. And the SBF defined by

ã
(kj,ji)
SBF,ln(d, α) =

√
2

c3j2l+1(zln)
jl(
zln
c
d)Y 0

l (α) (2)

where l ∈ [1 . . . NSBF ] denotes the order of Bessel functions,
jl denotes the l-order Bessel function, zln denotes the n-th root
of the l-order Beseel function and Y 0

l denotes the Spherical
harmonics. Considering the bonds have an important influence
on the physical properties of atoms, we should use a Graph
Neural Network to catch the topological structure and residue
type information. The attention mechanism has proven to be
very effective so far, so we introduce GAT to aggregate the
residue types and atom types information by message passing
on atom bonds. The GAT can be described by

eij = a(Whi,Whj)

αij =
exp (eij)∑

k∈Ni
exp (eik)

h′i =
K

∥
k=1

σ(
∑
k∈Ni

αk
ijW

khj)

(3)

where hi is the input feature of node i, a is a shared attentional
mechanism, W is a weight matrix, K is the number of
attention heads, Ni denotes the set of neighbors of node i, σ
denotes the activate function and ∥ denotes the concatenation
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Fig. 1. Details on GraphEBM’s architecture: The structural context( ≤ 5Å ) of a given residue is represented by a graph G that contains nodes V represented
by atom types and coordinates and edges E represented by eRBF , eSBF and eG where eRBF and eSBF are calculated by the Bessel functions, eG is the
pair-wise representation of the GAT’s output, and ⊕ denotes the concatenate operation. GraphEBM aggregates the embedding and interaction modules and
outputs the final score of the protein conformation.

operation. We using 8 layers of the interaction module and
GAT determined by experiment. When the number of layers
is not too high, GAT can continuously update the node
representation as the number of layers increases relatively. So
with the massage passing of GAT, the node representation can
catch bigger field structure information. The output of GAT is
RN×K×H , where N is the number of nodes, K is the number
of attention heads and H is the number of hidden dimension.
We mean the K dimension and pair nodes if their edge in
eRBF to RERBF×2H where ERBF is the number of RBF
edges. We use a MultiLayer Perceptron to map the pair-wised
embedding to RERBF×NGAT and concatenate with eRBF to
RERBF×(NGAT+NRBF ). Finally, the energy is the summary of
every interaction module output.

C. Smooth factor

In Fourier-based calculations, the multiplicative inverse of
the polynomial is crucial and indispensable for precision. in
this work, sampling a side-chain conformation is random, and
is not constrained by physical laws. This sampling strategy
will generate some atoms which are so close that the Bessel
function overflows or causes exploding gradient. Inspired by
Laplace smooth, the distance in RBF and SBF can add a λ
factor for smoothness and stability in training procedures.

The smooth factor can take the model out of this trouble
by stabilizing the gradient. The new RBF and SBF is defined
as followed. We will discuss the smooth factor selection and
analysis later.

ē
(ji)
RBF,n(d) = ẽ

(ji)
RBF,n(d+ λ) (4)

ā
(kj,ji)
SBF,ln(d, α) = ã

(kj,ji)
SBF,ln(d+ λ, α) (5)

D. Training and loss function

The model is to score the conformations. But in training
procedure, we only have the native conformations which is
the state with the lowest free energy according to Anfinsen’s
thermodynamic hypothesis. So we sample some negative con-
formations different from the native state. The loss function
can cover this knowledge by using the partition function
in statistical mechanics. The partition function can represent
the whole system states, so the loss function can just max-
imize the native conformation’s probability described by the
Boltzmann distribution: pθ = exp(−Eθ(x, c))/Z(c), where
Z =

∫
exp(−Eθ(x, c))dx, where θ denotes the learnable

parameters, c denotes the atoms of the surrounding molecular
context and x denotes the side chain conformation. In this
distribution, partition function means the energy of one molec-
ular formula’s all conformations which can be approximated
to conformations generated from the sampling strategy. So, the
more negative samples can make the partition function more
approach the real system. Furthermore by assuming the q(x|c)
distribution is uniform, the loss function can be simplified as
followed
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L(θ) = −Eθ(x, c)− log(Zθ(c))

= −Eθ(x, c)− log(Eq(x|c)[
e−Eθ(x,c)

q(x|c)
]

= −Eθ(x, c)− log(Eq(xi|c)[e
−Eθ(x

i,c)])

(6)

where q(x|c) denotes the conformation probability. After the
simplification, the partition function can be approximated by
the logarithmic sum of energy of all conformations

III. EXPERIMENTS

A. Dataset

TABLE I
TEST DATA SUMMARY

dataset All Buried Medium Surface
Test dataset 10720 1263 5587 3870
The unit is the number of amino acids

The dataset is the same with [23], which contains high-
resolution PDB structures and removes similar proteins in the
test dataset. The training dataset has 12473 structures, and the
test dataset has 121 structures.

B. Evaluation and comprison setting

The energy function should distinguish the conformation
closest to the native conformation from samples. The com-
parison methods consist of Deep Learning methods and the
Rosetta energy functions. We rerun the Rosetta to predict
the side-chain conformations of the test dataset using Rosetta
socre12 and Rosetta ref2015 [14] energy functions. And we
compare it with the Atom Transformer [23] which is the state-
of-the-art-model in this task.

The Rosetta is the powerful software in protein design,
so for comparable with it, the two sampling methods, corre-
sponding to the Rosetta protocol rotamer trials and rotamer
trials min, are discrete and continuous sampling strategies.
We use the same test sampling strategy as Atom Transformer
to reimplement the sampling strategy in Rosetta. Sampling
the µ(mean) and σ(standard deviation) of χ angles from
the rotamer library needs the backbone ϕ and ψ angles of
the residue. But the rotamer library is a discrete database
for backbone angles every 10 degrees and has a weighted
combination of µ and σ of χ angles for every 10 degrees
backbone angles. Every residue backbone angle can be put
in a grid surrounded by the closest discrete point from the
rotamer library. Then, samples can be weighted and generated
from the grid points by distance or uniform. The discrete
strategy is the χ1 and χ2 mean and (−1, 0, 1)·σ combinations.
Another continuous strategy is based on the µ and σ which
can describe a Gaussian distribution N (µ, 4 · σ). This is also
the training sampling strategy, but with the uniform sampling
for the matched combinations from the rotamer library. The
energy function scores every conformation sampled and selects
a conformation with the lowest energy. When all χ angles of

the selected conformation are within 20◦ of the ground truth,
the rotamer is recovered correctly.

For a more detailed analysis, we used the classification from
[23] to define buried residues(≥ 24), medium residues(others)
and surface residues(<16) by the number of neighbors within
10Å of the residue’s Cβ .

C. Result of side chain rotamer recovery

TABLE II
ROTAMER RECOVERY ACCURACY OVER THE TEST DATASET

Discrete sampling strategy
Model Avg Buried Medium Surface

Rosetta score12 (rotamer-trials) 73.1 90.7 78.4 59.7
Rosetta ref2015 (rotamer-trials) 75.1 91.5 80.4 62.5

Atom Transformer 70.2 91.3 73.7 58.2
Atom Transformer (ensemble) 71.5 91.2 75.3 59.5

GraphEBM 76.0 87.0 78.3 69.2

Continuous sampling strategy
Model Avg Buried Medium Surface

Rosetta score12 (rt-min) 73.2 91.0 78.2 60.2
Rosetta ref2015 (rt-min) 75.8 91.9 80.8 62.5

Atom Transformer 73.1 91.1 79.3 58.3
Atom Transformer (ensemble) 74.1 91.1 80.3 59.5

GraphEBM 78.4 90.6 81.4 70.2

Table II shows the comparison of our model with two
versions of Rosetta energy functions and Atom Trans-
former(reported by [23]). We run Rosetta on the same test
dataset of 121 proteins in the rotamer-trials mover and rt-
min mover. For a fair comparison, the same or comparable
sampling strategies above-mentioned are used to evaluate the
model. In table II, our model’s sampling strategy is discrete
while rotamer-trials mover and continuous while rt-min mover.
Moreover, our model performs better than Rosetta energy
functions and the Atom Transformer on both strategies. We
split the residues by above-defined types of buried, medium
and surface. Our model shows the significant outperformance
in surface residue. The surface residue rotamer recovery are
more difficult because of the less of physical constraints
compared to buried residues. But GraphEBM performs 10%
better than other models. We infer this improvement should is
due to that GraphEBM additionally introduces the geometry
information compared to other methods. Rosetta energy func-
tions are based on the interaction graph [14] which has been
calculated and stored as a library. This interaction graph and
the same interaction strategy in Atom Transformer focus on
the pair-wise relation, but GraphEBM considers the angle and
distance between three atoms.

Fig 2 reports the recovery rate for every type of residue
without the ALA and GLY, because they don’t have any χ an-
gles. We run the Rosetta rt-min mover for the test dataset in the
default setting without the energy function. The table shows
our model mostly outperforms or comes close to other models
even the Rosetta ref2015 energy function. Consistent with
other methods, the performance of our method on ARG(with a
positive charge and polarity), GLN(with polarity), GLU(with a
negative charge and polarity), and LYS(with a positive charge
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Fig. 2. Residues rotamer recovery

and polarity) rotamer recovery is worse than other residues.
Furthermore, their hydropathy index ranks in the top four [38].
And those residues are more possible on the surface.

D. The ∆χ1 and ∆χ2 angles distribution

Fig 3.a shows the distribution of the ∆χ1. The χ1 angle is
most precise angle of the native conformation, so we visualize
the angle proportion. The performance of GraphEBM is almost
close to Rosetta when ∆χ1 is small. But the Rosetta has more
extreme distribution. It is worth noting that the proportion of
GraphEBM approaches 1 faster than Rosetta when ∆χ1 >
10◦. Fig 3.b has the same trend of ∆χ1 + ∆χ2. And those
figures show the different sampling strategies have a greater
impact on the model accuracy, because the same strategy’s
models have the same performance while ∆χ is small.

IV. ANALYSIS

A. Ablation study on smooth factor and graph attention nerual
network

For training stability, we introduce a smooth factor in the
RBF and SBF. We need to prove the smooth factor can reduce
the gradient and analyze its sensitivity. In the RBF(1) and
SBF(2), the Bessel function case the gradient explosion.

Equation as followed shows the RBF is the 0-th order Bessel
function, so we can focus on the Bessel function’s gradient.

j0 =
sin(x)

x
∝

√
2

c

sin nπ
c d

d
= ẽRBF (7)

In the gradient-based optimizer [39], the parameter update
process is

∆t
j =

∂f(x; θt)

∂θtj

θt+1 = θt − α∆t

(8)
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Fig. 3. The distribution of ∆χ1 and ∆χ2.
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where θ denotes parameters of the model f , ∆ denotes the
gradient of the t-th iteration and α denotes the learning rate.
If the input x become the Bessel function result, the gradient
will become

∆t
j =

∂f(Jn(d); θ
t)

∂θtj

=
∂fm
∂θtjm

+
∂fm
∂fm−1

∂fm−1

∂θtj(m−1)

∂fm−1

∂θtj
=

∂fm−1

∂θtj(m−1)

+
∂fm−1

∂fm−2

∂fm−2

∂θtj(m−2)

(9)

where the first item on the right side denotes the ∂ only op-
erates the m-th layer parameters. So we can keep simplifying
the problem until the first layer of the model. Without loss of
generality, we can specify the first layer as a linear layer. The
first layer gradient is calculated by

lim
d→0

∂f1
∂wt

j1

= lim
d→0

Jn(d) = ∞ (10)

where w is the weight of the linear layer, holds when the
function Jn(d) is the Bessel function of the second kind.
So if we introduce the smooth factor in the form of Eq (4)
and Eq (5), the gradient will reduce. But the introduction of
the smooth factor will also reduce the range of the function
which cause the resolution of this input descend. Θ denotes
the resolution of the Bessel function, ∆ denotes the gradient
while updating the parameters. The bigger the Θ the model
better while the smaller the ∆ the model more stable. They
can be defined by

∆ ∝ max
d

(|Jn(d+ λ)|) ≈ max
d

(|y0(d+ λ)|)

= max
d

(
cos (d+ λ)

d+ λ
) ≈ 1

λ

Θ ∝ |range(Jn(d+ λ))| ≈ 1

λ

(11)

where range() denotes the function range. So the performance
of the model conditioned by λ can be described by the

P = −aλ− b

λ
+ c (12)

where P denotes the performance and a, b, c are constants.
Fig 4 shows the same tendency described by Equation (12)

with a = 0.091, b = 0.013, c = 0.850 fitted by MATLAB. It
demonstrates the proof of the smooth factor’s sensitivity and
effect is correct and its results are what we expected.

We also ran the GraphEBM without smooth factor and graph
attention network. We seted a gradient maximum cutoff of
100 to avoid exploding gradient, and got 0.029 relative lower
recovery of 0.755 in continuous strategy. Consistently, the
ablation of GAT got 0.018 relative lower recovery of 0.766
in the same strategy.
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Fig. 4. The rotamer recovery rate with the different smooth factor.

−180 −120 −60 0 60 120 180

Δχ1(
∘ )

50

100

150

200

250

300
re
la
ti
v
e
e
n
e
rg
y

Surface

Medium

Buried

(a)

−180 −120 −60 0 60 120 180

Δχ2(
∘ )

20

40

60

80

100

120

140

160

180

re
la
ti
v
e
e
n
e
rg
y

asp

phe

tyr

(b)

Fig. 5. Relative energy curve: a) Different position energy curve; b) Energy
curve for the amino acids Asp, Phe, and Tyr with terminal symmetry about
χ2
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B. Energy visualization

The buried side chains are more tightly packed [26]
than others because of the fewer degrees of freedom.
Buried/Medium/Surface energy curve in Fig 5.a shows the
steeper response to variations away from the native confor-
mation. Because some residues like Tyr, Asp, and Phe are
symmetric about χ2. Fig 5.b shows a 180◦ periodicity as the
symmetry of them.

C. Combinational side chain optimization

For testing our model on Combinational side chain op-
timization, we run the PULCHRA [36] to generate an init
side-chain conformation with only backbone. PULCHRA is
a geometry method and very fast for side chain generation.
But, it’s recovery rate are bad even only considering chi1.The
recover strategy is to iterate residue by residue and select
the optimal until every residue is stable. GraphEBM trying
to recover the side chain from the init conformation by
PULCHRA and GraphEBM improve the recovery rate from
53.5% to 75.7% in χ1 and for 38.3% to 62.2% in χ1 + χ2

the same. For our simple iteration strategy, the improvement
is sufficiently significant and considerable.

(a)

(b)

Fig. 6. The PDB deposited structure, the PULCHRA predicted all-atom model
and the our side chain conformation refined model is colored tan, sky-blue
and brick-red respectively.

For a more intuitive display, we visualize the surface of
a protein(PDBID:1TUKA). In Fig 6, the side-chain from
PULCHRA is disorganized and unaligned to the ground truth,
but the refined side-chain is more regular and closed to the
truth.

V. CONCLUSION

We propose GraphEBM combining the DimeNet++ and
GAT in order to obtain more detailed information from residue
types and atom bonds. In the energy-based model training
strategy, we introduce a smooth factor for stabilization. And
we perform better than Rosetta energy functions in the rotamer
recovery task. Those energy functions are based on physical
calculation and knowledge. This energy-based strategy can
use the simplest knowledge to achieve this performance.
GraphEBM plays an essential role in the model because of
DFT. We infer the DFT still has a more profound application
in Deep Learning. The model trained on recovering one
side chain can recover the whole protein’s side chain. But
this is limited by the sampling strategy because the whole
protein recovery task is a combinatorial optimization problem.
Based on simple sampling strategy can not solve that problem
well. We think the future work is to generate the side chain
conformation.

VI. CODE AVAILABILITY

All code is available at github.com/biomed-AI/GraphEBM.
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